Algebraic integers of pure quintic extensions
Abstract
Let $\mathbb{Q}$ denote the field of rational numbers and $\mathbb{K}$ be a pure quintic extension, that is, $\mathbb{K}=\mathbb{Q}(\sqrt[5]{d})$, where $d\in\mathbb{Z}$, $d\neq 1$ and is square free. The purpose of this work is to construct an integral basis of $\mathbb{K}$. Furthermore, we present the norm and trace of an element of $\mathbb{K}$ and the discriminant of the field $\mathbb{K}$.
Downloads
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2013/25977-7