Algebraic integers of pure quintic extensions
Resumen
Let $\mathbb{Q}$ denote the field of rational numbers and $\mathbb{K}$ be a pure quintic extension, that is, $\mathbb{K}=\mathbb{Q}(\sqrt[5]{d})$, where $d\in\mathbb{Z}$, $d\neq 1$ and is square free. The purpose of this work is to construct an integral basis of $\mathbb{K}$. Furthermore, we present the norm and trace of an element of $\mathbb{K}$ and the discriminant of the field $\mathbb{K}$.
Descargas
Citas
Alaca, S. and Williams, K. S., Introductory algebraic number theory, Cambridge University Press, (2004).
Andrade, A. A., Facini, L. S. and Esteves, L. C., Algebraic integers of certain cubic extension, Brasilian Journal of Development, 8(8), 56768-56786, (2022).
Hammed, A. and Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie, 58(106), 419-433, (2015).
Fadil, L. E., On power integral bases for certain pure sextic fields, Bol. Soc. Paran. Mat., 40, 1-7, 2022).
Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ. 26, 27-41, (1984).
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2013/25977-7



