Algebraic integers of pure quintic extensions

  • Antonio Aparecido de Andrade Department of Mathematics, São Paulo State University
  • Linara Stéfani Facini Department of Mathematics, São Paulo State University.
  • Livea Cichito Esteves Department of Mathematics, São Paulo State University.

Résumé

Let $\mathbb{Q}$ denote the field of rational numbers and $\mathbb{K}$ be a pure quintic extension, that is, $\mathbb{K}=\mathbb{Q}(\sqrt[5]{d})$, where $d\in\mathbb{Z}$, $d\neq 1$ and is square free. The purpose of this work is to construct an integral basis of $\mathbb{K}$. Furthermore, we present the norm and trace of an element of $\mathbb{K}$ and the discriminant of the field $\mathbb{K}$.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Alaca, S. and Williams, K. S., Introductory algebraic number theory, Cambridge University Press, (2004).

Andrade, A. A., Facini, L. S. and Esteves, L. C., Algebraic integers of certain cubic extension, Brasilian Journal of Development, 8(8), 56768-56786, (2022).

Hammed, A. and Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie, 58(106), 419-433, (2015).

Fadil, L. E., On power integral bases for certain pure sextic fields, Bol. Soc. Paran. Mat., 40, 1-7, 2022).

Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ. 26, 27-41, (1984).

Publiée
2025-02-14
Rubrique
Research Articles

Funding data