INFINITE FAMILIES OF SEXTIC NUMBER FIELDS WITH ALL POSSIBLE INDICES

  • Hamid Bouaouina Faculty of Sciences Dhar El Mahraz, P.O. Box 1796 Atlas-Fes, Sidi Mohamed ben Abdellah University, Morocco and Université Polytechnique Hauts-de-France Ceramaths FR, CNRS 2037F-59313 Valenciennes, France
  • Lhoussain El Fadil Faculty of Sciences Dhar El Mahraz, P.O. Box 1796 Atlas-Fes, Sidi Mohamed ben Abdellah University, Morocco
  • Omar Kchit Graduate Normal School of Fez, Sidi Mohamed ben Abdellah University, Morocco
  • Bouchaïb Sodaïgui Université Polytechnique Hauts-de-France Ceramaths FR, CNRS 2037F-59313 Valenciennes, France

Abstract

For each rational prime $p\in\{2,3,5\}$, we construct infinite families of sextic number fields $K$ such that the $p$-adic valuation of the index $i(K)$ satisfies $\nu_p(i(K))=\nu_p$, for every possible positive integer $\nu_p$. We illustrate our results by some computational examples.

Downloads

Download data is not yet available.
Published
2026-02-18
Section
Special Issue: Mathematics and applications