INFINITE FAMILIES OF SEXTIC NUMBER FIELDS WITH ALL POSSIBLE INDICES
Résumé
For each rational prime $p\in\{2,3,5\}$, we construct infinite families of sextic number fields $K$ such that the $p$-adic valuation of the index $i(K)$ satisfies $\nu_p(i(K))=\nu_p$, for every possible positive integer $\nu_p$. We illustrate our results by some computational examples.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2026-02-18
Rubrique
Special Issue: Mathematics and applications
Copyright (c) 2026 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



