INFINITE FAMILIES OF SEXTIC NUMBER FIELDS WITH ALL POSSIBLE INDICES
Resumen
For each rational prime $p\in\{2,3,5\}$, we construct infinite families of sextic number fields $K$ such that the $p$-adic valuation of the index $i(K)$ satisfies $\nu_p(i(K))=\nu_p$, for every possible positive integer $\nu_p$. We illustrate our results by some computational examples.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2026-02-18
Sección
Special Issue: Mathematics and applications
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



