On Zweier Sequence Spaces and de la Vall\'{e}e-Poussin mean of order $\alpha$

Abstract

The main purpose of this paper is to study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p).$

Downloads

Download data is not yet available.

Author Biographies

Bipan Hazarika, Rajiv Gandhi University

Department of Mathematics

Assistant Professor

Karan Tamang, North Eastern Regional Institute of Science and Technology

Department of Mathematics

Research Assistant

References

R. Çolak, On -statistical convergence. In: Conference on Summability and Applications, Istanbul, Turkey, 12-13 May 2011 (2011)

R. Çolak, C. A. Bektas -statistical convergence of order , Acta Math. Sci. 31(3), 953-959 (2011)

R. Çolak, Statistical Convergence of Order , Modern Methods in Analysis and Its Applications, pp. 121-129. Anamaya Pub., New Delhi (2010)

Y. A. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Bannach sequence spaces, Acta Sci. Math.(Szeged), 65(1999), 179-187.

J. Diestel, Sequence and Series in Banach spaces, in Graduate Texts in Math., Vol. 92, Springer-Verlag,1984.

A. Esi and A. SapsÄszoglu, On some lacunary -strong Zweier convergent sequence spaces, Romai J.8(2)(2012), 61-70.

M. Et, Muhammed Çinar, Murat Karakas, On -statistical convergence of order of sequences of function, Jour. Ineq. Appl., 2013, 2013:204.

M. Et, S.A. Mohiuddine, A. Alotaibi, On -statistical convergence and strongly -summable functions of order , Jour. Ineq. Appl., 2013, 2013:469.

M. Et, V. Karakaya, A new difference sequence set of order and its geometrical properties, Abst. Appl. Anal., 2014(2014), 4pp

M. Et, Murat Karakas, Muhammed Çinar, Some geometric properties of a new modular space defined by Zweier operator, Fixed point Theory Appl., 2013(2013):165, 10pp

M. Güngör, M. Et and Y. Altin, Strongly (V, , q)-summable sequences defined by Orlicz functions, App. Math. Comput., 157(2004), 561-571.

B. Hazarika, K. Tamang and B. K. Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The Jour. Math. Comp. Sci., 8(3)(2014), 307-318.

B. Hazarika, Karan Tamang and B. K. Singh, On Paranormed Zweier Ideal Convergent Sequence Spaces Defined By Orlicz Function, Journal of the Egyptian Mathematical Society, 22(3)(2014), 413-419, doi: 10.1016/j.joems.2013.08.005.

B. Hazarika, E. Savas, -statistical convergence in n-normed spaces, Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Matematica, 21(2)(2013), 141-153.

Y. Fadile Karababa and A. Esi, On some strong Zweier convergent sequence spaces, Acta Universitatis Apulensis,29(2012), 9-15.

Murat Karakas, M. Et, V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences, Acta Math. Ser. B. Engl. Ed., 33(6)(2013), 1711-1720.

V. A. Khan, K. Ebadullah, A. Esi, N. Khan, M. Shafiq, On Paranorm Zweier I-convergent sequences spaces, Inter. Jour. Analysis, Vol. 2013 (2013), Article ID 613501, 6 pages.

V.A.Khan, K. Ebadullah, A. Esi and M. Shafiq, On some Zweier I-convergent sequence spaces defined by a modulus function, Afr. Mat. DOI 10.1007/s13370-013-0186-y (2013).

L. Leindler, Über die la Vallée-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 16, 375-387 (1965)

M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, Jour. Ineq. Appl., 2007, ID-86757, 6

M. Mursaleen, -statistical convergence. Math. Slovaca 50(1), 111-115 (2000)

M. Sengönül, On The Zweier Sequence Space. Demonstratio Math. Vol.XL No. (1)(2007), 181-196

Published
2015-07-13
Section
Articles