On Zweier Sequence Spaces and de la Vall\'{e}e-Poussin mean of order $\alpha$
Resumen
The main purpose of this paper is to study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space $[\mathcal{Z}_{\lambda}^{\alpha}]_{\infty}(p).$
Descargas
Citas
R. Çolak, On -statistical convergence. In: Conference on Summability and Applications, Istanbul, Turkey, 12-13 May 2011 (2011)
R. Çolak, C. A. Bektas -statistical convergence of order , Acta Math. Sci. 31(3), 953-959 (2011)
R. Çolak, Statistical Convergence of Order , Modern Methods in Analysis and Its Applications, pp. 121-129. Anamaya Pub., New Delhi (2010)
Y. A. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Bannach sequence spaces, Acta Sci. Math.(Szeged), 65(1999), 179-187.
J. Diestel, Sequence and Series in Banach spaces, in Graduate Texts in Math., Vol. 92, Springer-Verlag,1984.
A. Esi and A. SapsÄszoglu, On some lacunary -strong Zweier convergent sequence spaces, Romai J.8(2)(2012), 61-70.
M. Et, Muhammed Çinar, Murat Karakas, On -statistical convergence of order of sequences of function, Jour. Ineq. Appl., 2013, 2013:204.
M. Et, S.A. Mohiuddine, A. Alotaibi, On -statistical convergence and strongly -summable functions of order , Jour. Ineq. Appl., 2013, 2013:469.
M. Et, V. Karakaya, A new difference sequence set of order and its geometrical properties, Abst. Appl. Anal., 2014(2014), 4pp
M. Et, Murat Karakas, Muhammed Çinar, Some geometric properties of a new modular space defined by Zweier operator, Fixed point Theory Appl., 2013(2013):165, 10pp
M. Güngör, M. Et and Y. Altin, Strongly (V, , q)-summable sequences defined by Orlicz functions, App. Math. Comput., 157(2004), 561-571.
B. Hazarika, K. Tamang and B. K. Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The Jour. Math. Comp. Sci., 8(3)(2014), 307-318.
B. Hazarika, Karan Tamang and B. K. Singh, On Paranormed Zweier Ideal Convergent Sequence Spaces Defined By Orlicz Function, Journal of the Egyptian Mathematical Society, 22(3)(2014), 413-419, doi: 10.1016/j.joems.2013.08.005.
B. Hazarika, E. Savas, -statistical convergence in n-normed spaces, Analele Stiintifice ale Univ. Ovidius Constanta, Ser. Matematica, 21(2)(2013), 141-153.
Y. Fadile Karababa and A. Esi, On some strong Zweier convergent sequence spaces, Acta Universitatis Apulensis,29(2012), 9-15.
Murat Karakas, M. Et, V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences, Acta Math. Ser. B. Engl. Ed., 33(6)(2013), 1711-1720.
V. A. Khan, K. Ebadullah, A. Esi, N. Khan, M. Shafiq, On Paranorm Zweier I-convergent sequences spaces, Inter. Jour. Analysis, Vol. 2013 (2013), Article ID 613501, 6 pages.
V.A.Khan, K. Ebadullah, A. Esi and M. Shafiq, On some Zweier I-convergent sequence spaces defined by a modulus function, Afr. Mat. DOI 10.1007/s13370-013-0186-y (2013).
L. Leindler, Über die la Vallée-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 16, 375-387 (1965)
M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, Jour. Ineq. Appl., 2007, ID-86757, 6
M. Mursaleen, -statistical convergence. Math. Slovaca 50(1), 111-115 (2000)
M. Sengönül, On The Zweier Sequence Space. Demonstratio Math. Vol.XL No. (1)(2007), 181-196
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).