Weighted Steklov problem under nonresonance conditions

  • Jonas Doumatè University of Abomey-Calavi
  • Aboubacar Marcos Université d’Abomey-Calavi
Keywords: Nonresonance, $p$-Laplacian operator, Sobolev trace embedding, Steklov problem, First nonprincipal eigenvalue

Abstract

We deal with the existence of weak solutions of the nonlinear problem $-\Delta_{p}u+V|u|^{p-2}u$ in a bounded smooth domain $\Omega\subset \mathbb{R}^{N}$ which is subject to the boundary condition $|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=f(x,u)$. Here $V\in L^{\infty}(\Omega)$ possibly exhibit both signs which leads to an extension  of particular cases in literature and $f$ is a Carathéodory function that satisfies some additional conditions. Finally we prove, under and between nonresonance condtions, existence results for the problem.

Downloads

Download data is not yet available.

Author Biographies

Jonas Doumatè, University of Abomey-Calavi
Institut de Mathématiques et de Sciences Physiques
Aboubacar Marcos, Université d’Abomey-Calavi
Institut de Mathématiques et de Sciences Physiques
Published
2018-10-01
Section
Articles