Weighted Steklov problem under nonresonance conditions
Résumé
We deal with the existence of weak solutions of the nonlinear problem $-\Delta_{p}u+V|u|^{p-2}u$ in a bounded smooth domain $\Omega\subset \mathbb{R}^{N}$ which is subject to the boundary condition $|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=f(x,u)$. Here $V\in L^{\infty}(\Omega)$ possibly exhibit both signs which leads to an extension of particular cases in literature and $f$ is a Carathéodory function that satisfies some additional conditions. Finally we prove, under and between nonresonance condtions, existence results for the problem.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-10-01
Numéro
Rubrique
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).