On a nonlinear PDE involving weighted $p$-Laplacian
Résumé
In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator\begin{gather*}
- \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}},
\end{gather*}
on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate conditions
on the functions $f, w$ and the nonlinearity $\frac{1}{(1-u)^{2}}$, we prove the existence and the uniqueness of solutions of the above problem. Our analysis mainly combines the variational method and critical point theory. Such solution is obtained as a minimizer for the energy functional associated with our problem in the setting of the weighted Sobolev spaces.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2019-03-31
Numéro
Rubrique
Research Articles
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



