On a nonlinear PDE involving weighted $p$-Laplacian
Resumen
In the present paper, we study the nonlinear partial differential equation with the weighted $p$-Laplacian operator\begin{gather*}
- \operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u) = \frac{ f(x)}{(1-u)^{2}},
\end{gather*}
on a ball ${B}_{r}\subset \mathbb{R}^{N}(N\geq 2)$. Under some appropriate conditions
on the functions $f, w$ and the nonlinearity $\frac{1}{(1-u)^{2}}$, we prove the existence and the uniqueness of solutions of the above problem. Our analysis mainly combines the variational method and critical point theory. Such solution is obtained as a minimizer for the energy functional associated with our problem in the setting of the weighted Sobolev spaces.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2019-03-31
Número
Sección
Articles
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).