On power integral bases for certain pure sextic fields

  • lhoussain El Fadil Sidi Mohamed ben Abdullah University

Abstract

In their paper [1], Shahzad Ahmad et al. given a characterization on any pure sextic number field Q(m1/6) with square-free integers m satisfying m 6 ±1 (mod 9) to have a power integral bases or do not. In this paper, for these results, we give a new easier proof than that given in [1]. We further investigate the cases m 1 (mod 4) independently to the satisfaction of m2 1 (mod 9), m 1 (mod 9), and the number fields defined by x2r3t
−m, where r, t are two non-negative integers, and m is a square free integer are investigated. The proposed proofs are based on Dedekind’s criterion and on prime ideal factorization.

Downloads

Download data is not yet available.

Author Biography

lhoussain El Fadil, Sidi Mohamed ben Abdullah University

Faculty of Sciences Dhar-Mehraz

References

S. Ahmad, T. Nakahara, and S. M. Husnine Power integral bases for certain pure sextic fields, Int. J. of Number Theory 10(8) (2014) 2257- 2265. https://doi.org/10.1142/S1793042114500778

H. Cohn, A classical invitation to algebraic numbers and class fields, With two appendices by Olga Taussky: "Artin's 1932 Gottingen lectures on class field theory" and "Connections between algebraic number theory and integral matrices". Universitext. Springer-Verlag, New York-Heidelberg (1978).

H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag Berlin Heidelberg (1993). https://doi.org/10.1007/978-3-662-02945-9

L. El Fadil, A. Chillali, and I. Akharaz Prime ideal factorization in quartic number fields, Gulf journal of Mathematics 4(4) (2016) 1-15.

L. El Fadil, J. Montes and E. Nart, Newton polygons and p-integral bases of quartic number fields, J. Algebra and Appl. 11(4)(2012). https://doi.org/10.1142/S0219498812500739

T. Funakura, On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984) 27--41.

J. Guardia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (1) (2012) 361-416. https://doi.org/10.1090/S0002-9947-2011-05442-5

K. Hensel, Untersuchung der Fundamentalgleichung einer Gattung reine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante, J. Reine Angew. Math. 113 (1894) 61-83. https://doi.org/10.1515/crll.1894.113.61

Y. Motoda, T. Nakahara and S. I. A. Shah, On a problem of Hasse, J. Number Theory 96 (2002) 326-334. https://doi.org/10.1006/jnth.2002.2805

Y. Motoda, T. Nakahara, S. I. A. Shah and T. Uehara, On a problem of Hasse for certain imaginary abelian fields, RIMS Kokyuroku Bessatsu B12 (2009) 209-221.

A. Hameed, T. Nakahara, S. M. Husnine and S. Ahmad, On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math. 7 (2011) 19-24.

S. Ahmad, T. Nakahara and S. M. Husnine, Non-monogenesis of a family of pure sextic fields, Arch. Sci. (Geneva) 65(7) (2012) 42-49.

O. Ore, Newtonsche Polygone in der Theorie der algebraischen K¨orper, Math. Ann., 99 (1928) 84-117. https://doi.org/10.1007/BF01459087

R. Dedekind, Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der hoheren Kongruenzen, Gottingen Abhandlungen 23 (1878) 1-23.

Published
2022-02-07
Section
Articles