On power integral bases for certain pure sextic fields

  • lhoussain El Fadil Sidi Mohamed ben Abdullah University

Resumen

In their paper [1], Shahzad Ahmad et al. given a characterization on any pure sextic number field Q(m1/6) with square-free integers m satisfying m 6 ±1 (mod 9) to have a power integral bases or do not. In this paper, for these results, we give a new easier proof than that given in [1]. We further investigate the cases m 1 (mod 4) independently to the satisfaction of m2 1 (mod 9), m 1 (mod 9), and the number fields defined by x2r3t
−m, where r, t are two non-negative integers, and m is a square free integer are investigated. The proposed proofs are based on Dedekind’s criterion and on prime ideal factorization.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

lhoussain El Fadil, Sidi Mohamed ben Abdullah University

Faculty of Sciences Dhar-Mehraz

Citas

S. Ahmad, T. Nakahara, and S. M. Husnine Power integral bases for certain pure sextic fields, Int. J. of Number Theory 10(8) (2014) 2257- 2265. https://doi.org/10.1142/S1793042114500778

H. Cohn, A classical invitation to algebraic numbers and class fields, With two appendices by Olga Taussky: "Artin's 1932 Gottingen lectures on class field theory" and "Connections between algebraic number theory and integral matrices". Universitext. Springer-Verlag, New York-Heidelberg (1978).

H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag Berlin Heidelberg (1993). https://doi.org/10.1007/978-3-662-02945-9

L. El Fadil, A. Chillali, and I. Akharaz Prime ideal factorization in quartic number fields, Gulf journal of Mathematics 4(4) (2016) 1-15.

L. El Fadil, J. Montes and E. Nart, Newton polygons and p-integral bases of quartic number fields, J. Algebra and Appl. 11(4)(2012). https://doi.org/10.1142/S0219498812500739

T. Funakura, On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984) 27--41.

J. Guardia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (1) (2012) 361-416. https://doi.org/10.1090/S0002-9947-2011-05442-5

K. Hensel, Untersuchung der Fundamentalgleichung einer Gattung reine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante, J. Reine Angew. Math. 113 (1894) 61-83. https://doi.org/10.1515/crll.1894.113.61

Y. Motoda, T. Nakahara and S. I. A. Shah, On a problem of Hasse, J. Number Theory 96 (2002) 326-334. https://doi.org/10.1006/jnth.2002.2805

Y. Motoda, T. Nakahara, S. I. A. Shah and T. Uehara, On a problem of Hasse for certain imaginary abelian fields, RIMS Kokyuroku Bessatsu B12 (2009) 209-221.

A. Hameed, T. Nakahara, S. M. Husnine and S. Ahmad, On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math. 7 (2011) 19-24.

S. Ahmad, T. Nakahara and S. M. Husnine, Non-monogenesis of a family of pure sextic fields, Arch. Sci. (Geneva) 65(7) (2012) 42-49.

O. Ore, Newtonsche Polygone in der Theorie der algebraischen K¨orper, Math. Ann., 99 (1928) 84-117. https://doi.org/10.1007/BF01459087

R. Dedekind, Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der hoheren Kongruenzen, Gottingen Abhandlungen 23 (1878) 1-23.

Publicado
2022-02-07
Sección
Articles