The equality of Hochschild cohomology group and module cohomology group for semigroup algebras
Abstract
Let $S$ be a commutative inverse semigroup with idempotent set $E$. In this paper, we show that for every $n\in \mathbb{N}_0$, $n$-th Hochschild cohomology group of semigroup algebra $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ and its $n$-th $\ell^1(E)$-module cohomology group, are equal. Indeed, we prove that
\[ \HH^{n}(\ell^1(S),\ell^\infty(S))=\HH^{n}_{\ell^1(E)}(\ell^1(S),\ell^\infty(S)),\] for all $n\geq 0$.
Downloads
References
M. Amini, Module Amenability for Semigroup Algebras, Semigroup forum., 69, 243-254, (2004). https://doi.org/10.1007/s00233-004-0107-3
M. Amini and D. E. Bagha, Weak Module Amenability for Semigroup Algebras, Semigroup forum., 71, 18-26, (2005). https://doi.org/10.1007/s00233-004-0166-5
S. Bowling, J. Duncan, First Order Cohomology of Banach Semigroup Algebras, Semigroup Forum., 56(1), 130-145, (1998). https://doi.org/10.1007/s00233-002-7009-z
H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, (2000).
J. Duncan and I. Namioka, Amenability of Inverse Semigroups and their Semigroup Algebras, Proc. R. Soc. Edinb., 80A, 309-321, (1978). https://doi.org/10.1017/S0308210500010313
F. Gourdeau, A. R. Pourabbas and M. C. White, Simplicial Cohomology of Some Semigroup Algebras, Canadian Mathematical Bulletin., 50 (1), 56-70, (2007). https://doi.org/10.4153/CMB-2007-006-6
B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc., 127, 96 pp, (1972). https://doi.org/10.1090/memo/0127
B. E. Johnson, R. V. Kadison and J. R. Ringrose, Cohomology of Operator Algebras III, Reduction to Normal Cohomology, Bull. Soc. Math. France., 100, 73-96, (1972). https://doi.org/10.24033/bsmf.1731
A. Y. Helemskii, The Homology of Banach and Topological Algebra, Muscow Univ. Press, Moscow 1986, English transl. Kluwer Academic Publishers, Dordrecht 1989. https://doi.org/10.1007/978-94-009-2354-6
Z. A. Lykova, Relative Cohomology of Banach Algebras, J. Operator Theory., 41, 23-53, (1999).
E. Nasrabadi and A. R. Pourabbas, Module Cohomology Group of Inverse Semigroup Algebras, Bull. Irannian Math. Soc., 4, 157-169, (2011).
E. Nasrabadi and A. R. Pourabbas, Second Module Cohomology Group of Inverse Semigroup Algebras, Semigroup Forum., 81, no 1, 269-278, (2010). https://doi.org/10.1007/s00233-010-9228-z
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).