The equality of Hochschild cohomology group and module cohomology group for semigroup algebras

  • Ebrahim Nasrabadi University of Birjand‎

Resumen

‎Let $S$ be a commutative inverse semigroup with idempotent set $E$‎. ‎In this paper‎, ‎we show that for every $n\in \mathbb{N}_0$‎, ‎$n$-th Hochschild cohomology group of semigroup algebra $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ and its $n$-th $\ell^1(E)$-module cohomology group‎, ‎are equal‎. ‎Indeed‎, ‎we prove that‎

‎\[ \HH^{n}(\ell^1(S),\ell^\infty(S))=\HH^{n}_{\ell^1(E)}(\ell^1(S),\ell^\infty(S)),\] for all $n\geq 0$‎.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ebrahim Nasrabadi, University of Birjand‎

Faculty of Mathematics Science and Statistics, ‎Department of Mathematics

Citas

M. Amini, Module Amenability for Semigroup Algebras, Semigroup forum., 69, 243-254, (2004). https://doi.org/10.1007/s00233-004-0107-3

M. Amini and D. E. Bagha, Weak Module Amenability for Semigroup Algebras, Semigroup forum., 71, 18-26, (2005). https://doi.org/10.1007/s00233-004-0166-5

S. Bowling, J. Duncan, First Order Cohomology of Banach Semigroup Algebras, Semigroup Forum., 56(1), 130-145, (1998). https://doi.org/10.1007/s00233-002-7009-z

H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, (2000).

J. Duncan and I. Namioka, Amenability of Inverse Semigroups and their Semigroup Algebras, Proc. R. Soc. Edinb., 80A, 309-321, (1978). https://doi.org/10.1017/S0308210500010313

F. Gourdeau, A. R. Pourabbas and M. C. White, Simplicial Cohomology of Some Semigroup Algebras, Canadian Mathematical Bulletin., 50 (1), 56-70, (2007). https://doi.org/10.4153/CMB-2007-006-6

B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc., 127, 96 pp, (1972). https://doi.org/10.1090/memo/0127

B. E. Johnson, R. V. Kadison and J. R. Ringrose, Cohomology of Operator Algebras III, Reduction to Normal Cohomology, Bull. Soc. Math. France., 100, 73-96, (1972). https://doi.org/10.24033/bsmf.1731

A. Y. Helemskii, The Homology of Banach and Topological Algebra, Muscow Univ. Press, Moscow 1986, English transl. Kluwer Academic Publishers, Dordrecht 1989. https://doi.org/10.1007/978-94-009-2354-6

Z. A. Lykova, Relative Cohomology of Banach Algebras, J. Operator Theory., 41, 23-53, (1999).

E. Nasrabadi and A. R. Pourabbas, Module Cohomology Group of Inverse Semigroup Algebras, Bull. Irannian Math. Soc., 4, 157-169, (2011).

E. Nasrabadi and A. R. Pourabbas, Second Module Cohomology Group of Inverse Semigroup Algebras, Semigroup Forum., 81, no 1, 269-278, (2010). https://doi.org/10.1007/s00233-010-9228-z

Publicado
2021-12-20
Sección
Articles