Common fixed point for multivalued ($\psi$-$G$)-contraction mappings in partial metric spaces with a graph structure

Abstract

In the present work, we first discuss the definition of a multivalued ($\psi$-$G$)-contraction mapping in a metric
space endowed with a graph as introduced in \cite{1} and we suggest a generalization. Then, we prove a common fixed point theorem for multivalued ($\psi$-$G$)-contraction mappings in partial metric spaces endowed with a graph. An example of application illustrates the main existence result and some known existence results are derived.

Downloads

Download data is not yet available.

Author Biography

Smail Djebali, Al Imam Mohammad Ibn Saud Islamic University

Mathematics and Statistics

References

M. Abbas, B. Ali, and G. Petrusel, Fixed points of set-valued contractions in partial metric spaces endowed with a graph, Carpathian J. Math. 30 (2014), no. 2, 129-137. https://doi.org/10.37193/CJM.2014.02.15

M. Abbas, M. R. Alfuraidan, and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math. 32 (2016), no. 1, 1-12. https://doi.org/10.1186/s13663-015-0263-z

M. Abbas, T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory and Applications (2013), 2013:20, pp 8. https://doi.org/10.1186/1687-1812-2013-20

M. Abbas, T. Nazir, and S. Romaguera, Fixed point results for generalized cyclic contraction mappings in partial metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 106 (2012), no. 1, 287-297. https://doi.org/10.1007/s13398-011-0051-5

M. R. Alfuraidan, M. A. Khamsi, A note on coincidence points of multivalued weak G-contraction mappings, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4098-4103. https://doi.org/10.22436/jnsa.009.06.53

M. R. Alfuraidan, M. Bachar, and M. A. Khamsi, A graphical version of Reich's fixed point theorem, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3931-3938. https://doi.org/10.22436/jnsa.009.06.40

M. Ali, T. Kamran, and L. Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph, J. Inequal. Appl. 2015 (2015), Article ID 205, 11 pp. https://doi.org/10.1186/s13660-015-0728-y

I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl. 157, (2010), no. 18, 2778-2785. https://doi.org/10.1016/j.topol.2010.08.017

H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl. 159 (2012), no. 14, 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012

H. Aydi, M. Abbas, and C. Vetro, Common fixed points for multivalued generalized contractions on partial metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), no. 2 483-501. https://doi.org/10.1007/s13398-013-0120-z

H. Aydi, E. Karapinar and B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory Appl., 2012, 2012:76. https://doi.org/10.1186/1687-1812-2012-76

L. Ciric, B. Samet, H. Aydi, and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218, 2398-2406, no. 6, (2011). https://doi.org/10.1016/j.amc.2011.07.005

M. H. Dehkordi, M. Ghods, Common fixed point of multivalued graph contraction in metric spaces, Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 225-230.

R. H. Haghi, Sh. Rezapour, and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Analysis, 74 (2011) 1799-1803. https://doi.org/10.1016/j.na.2010.10.052

R. H. Haghi, Sh. Rezapour, and N. Shahzad, Be careful on partial metric fixed point results, Topol. Appl., 160 (2013) 450-454. https://doi.org/10.1016/j.topol.2012.11.004

R. Heckmann, Approximation of metric spaces by partial metric spaces. Applications of ordered sets in computer science (Braunschweig, 1996), Appl. Categ. Struct., 7(1999), no. 1-2, 71-83.

J. Jachymski, The contraction principle for mappings on a metric with a graph, Proc. Am. Math. Soc. 136 (2008), no. 4, 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1

E. Karapinar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1894-1899. https://doi.org/10.1016/j.aml.2011.05.013

P. Kumam, C. Vetro, and F. Vetro, Fixed points for weak α-ψ-contractions in partial metric spaces, Abstr. Appl. Anal. 2013, Article ID 986028 (2013), pp 9. https://doi.org/10.1155/2013/986028

S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

S. B. Nadler, Jr., Multi-valued contration mappings, Pacific J. Math., 30, 1969, no. 2, 475-488. https://doi.org/10.2140/pjm.1969.30.475

S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004), no. 1-2, 17-26.

S. O'Neill, Partial metrics, valuations, and domain theory in: Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 806 (1996), 304-315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x

B. Samet, E. Karapinar, H. Aydi, and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013, 2013:50. https://doi.org/10.1186/1687-1812-2013-50

Published
2022-01-23
Section
Articles