Common fixed point for multivalued ($\psi$-$G$)-contraction mappings in partial metric spaces with a graph structure
Résumé
In the present work, we first discuss the definition of a multivalued ($\psi$-$G$)-contraction mapping in a metric
space endowed with a graph as introduced in \cite{1} and we suggest a generalization. Then, we prove a common fixed point theorem for multivalued ($\psi$-$G$)-contraction mappings in partial metric spaces endowed with a graph. An example of application illustrates the main existence result and some known existence results are derived.
Téléchargements
Références
M. Abbas, B. Ali, and G. Petrusel, Fixed points of set-valued contractions in partial metric spaces endowed with a graph, Carpathian J. Math. 30 (2014), no. 2, 129-137. https://doi.org/10.37193/CJM.2014.02.15
M. Abbas, M. R. Alfuraidan, and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math. 32 (2016), no. 1, 1-12. https://doi.org/10.1186/s13663-015-0263-z
M. Abbas, T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory and Applications (2013), 2013:20, pp 8. https://doi.org/10.1186/1687-1812-2013-20
M. Abbas, T. Nazir, and S. Romaguera, Fixed point results for generalized cyclic contraction mappings in partial metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 106 (2012), no. 1, 287-297. https://doi.org/10.1007/s13398-011-0051-5
M. R. Alfuraidan, M. A. Khamsi, A note on coincidence points of multivalued weak G-contraction mappings, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4098-4103. https://doi.org/10.22436/jnsa.009.06.53
M. R. Alfuraidan, M. Bachar, and M. A. Khamsi, A graphical version of Reich's fixed point theorem, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3931-3938. https://doi.org/10.22436/jnsa.009.06.40
M. Ali, T. Kamran, and L. Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph, J. Inequal. Appl. 2015 (2015), Article ID 205, 11 pp. https://doi.org/10.1186/s13660-015-0728-y
I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl. 157, (2010), no. 18, 2778-2785. https://doi.org/10.1016/j.topol.2010.08.017
H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl. 159 (2012), no. 14, 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012
H. Aydi, M. Abbas, and C. Vetro, Common fixed points for multivalued generalized contractions on partial metric spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), no. 2 483-501. https://doi.org/10.1007/s13398-013-0120-z
H. Aydi, E. Karapinar and B. Samet, Remarks on some recent fixed point theorems, Fixed Point Theory Appl., 2012, 2012:76. https://doi.org/10.1186/1687-1812-2012-76
L. Ciric, B. Samet, H. Aydi, and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218, 2398-2406, no. 6, (2011). https://doi.org/10.1016/j.amc.2011.07.005
M. H. Dehkordi, M. Ghods, Common fixed point of multivalued graph contraction in metric spaces, Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 225-230.
R. H. Haghi, Sh. Rezapour, and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Analysis, 74 (2011) 1799-1803. https://doi.org/10.1016/j.na.2010.10.052
R. H. Haghi, Sh. Rezapour, and N. Shahzad, Be careful on partial metric fixed point results, Topol. Appl., 160 (2013) 450-454. https://doi.org/10.1016/j.topol.2012.11.004
R. Heckmann, Approximation of metric spaces by partial metric spaces. Applications of ordered sets in computer science (Braunschweig, 1996), Appl. Categ. Struct., 7(1999), no. 1-2, 71-83.
J. Jachymski, The contraction principle for mappings on a metric with a graph, Proc. Am. Math. Soc. 136 (2008), no. 4, 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1
E. Karapinar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1894-1899. https://doi.org/10.1016/j.aml.2011.05.013
P. Kumam, C. Vetro, and F. Vetro, Fixed points for weak α-ψ-contractions in partial metric spaces, Abstr. Appl. Anal. 2013, Article ID 986028 (2013), pp 9. https://doi.org/10.1155/2013/986028
S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
S. B. Nadler, Jr., Multi-valued contration mappings, Pacific J. Math., 30, 1969, no. 2, 475-488. https://doi.org/10.2140/pjm.1969.30.475
S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004), no. 1-2, 17-26.
S. O'Neill, Partial metrics, valuations, and domain theory in: Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 806 (1996), 304-315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x
B. Samet, E. Karapinar, H. Aydi, and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013, 2013:50. https://doi.org/10.1186/1687-1812-2013-50
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).