Investigation approach for a nonlinear singular Fredholm integro-differential equation

  • Sami Touati Université 8 Mai 1945 Guelma
  • Mohamed-Zine Aissaoui Université 8 Mai 1945 Guelma
  • Samir Lemita École normale supérieure Ouergula
  • Hamza Guebbai Université 8 Mai 1945 Guelma

Abstract

In this paper, we examine the existence and uniqueness of the solution of nonlinear integro-differential Fredholm equation with a weakly singular kernel. Then, we develop an iterative scheme to approach this solution using the product integration method. Finally, we conclude with a numerical tests to show the effectiveness of the proposed method.

Downloads

Download data is not yet available.

Author Biographies

Sami Touati, Université 8 Mai 1945 Guelma

Faculté de Mathématiques et de l'Informatique et des Sciences de la Matiére.

Mohamed-Zine Aissaoui, Université 8 Mai 1945 Guelma

Faculté de Mathématiques et de l'Informatique et des Sciences de la Matiére.

Hamza Guebbai, Université 8 Mai 1945 Guelma

Faculté de Mathématiques et de l'Informatique et des Sciences de la Matiére.

References

K. Atkinson and H. Han, Theoretical numerical analysis: a functional analysis framework. Springer, New York, 2001. https://doi.org/10.1007/978-0-387-21526-6

A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J Comput Appl Math. 232 (2009) 449-454. https://doi.org/10.1016/j.cam.2009.06.038

M. Erfanian, M. Gachpazan, and H. Beiglo, A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Comput. Math. Math. Phys.57 (2017) 297-305. https://doi.org/10.1134/S096554251702004X

M. Erfanian, A. Mansoori, Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. Math. Comput. Simul.165 (2019) 223-23. https://doi.org/10.1016/j.matcom.2019.03.006

M. Erfanian, H. Zeidabadi, Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra-Fredholm integral equations. Mathematical Sciences.12 (2018) 103-109. https://doi.org/10.1007/s40096-018-0249-1

M. Erfanian, H. Zeidabadi, Approximate solution of linear Volterra integro-differential equation by using cubic B-spline finite element method in the complex plane. Adv. Difference Equ.62 (2019). https://doi.org/10.1186/s13662-019-2012-9

M. Erfanian, H. Zeidabadi, solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases. Asian-Eur. J. Math.12 (2019) 103-109. https://doi.org/10.1142/S1793557119500554

J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation. Quart Appl Math. 53 (1995) 245-258. https://doi.org/10.1090/qam/1330651

M. Ghiat and H. Guebbai, Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel. Comp Appl Math 232 (2018) 1-14. https://doi.org/10.1007/s40314-018-0597-3

B. N. Mandal and A. Chakrabarti, Applied Singular Integral Equations. CRC Press, 2011.

B. G. Pachpatte, On Fredholm type integrodifferential equation. Tamkang J. Math.39 (2008) 85-94. https://doi.org/10.5556/j.tkjm.39.2008.48

C. Schneider, Product integration for weakly singular integral equations. Math Comput.36 (1981) 207-213. https://doi.org/10.1090/S0025-5718-1981-0595053-0

K. Wang, Q. Wang, and K. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear VolterraFredholm integral equation. Appl. Math. Comput.225 (1981) 631-637. https://doi.org/10.1016/j.amc.2013.09.069

Published
2022-01-30
Section
Articles