Investigation approach for a nonlinear singular Fredholm integro-differential equation
Abstract
In this paper, we examine the existence and uniqueness of the solution of nonlinear integro-differential Fredholm equation with a weakly singular kernel. Then, we develop an iterative scheme to approach this solution using the product integration method. Finally, we conclude with a numerical tests to show the effectiveness of the proposed method.
Downloads
References
K. Atkinson and H. Han, Theoretical numerical analysis: a functional analysis framework. Springer, New York, 2001. https://doi.org/10.1007/978-0-387-21526-6
A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J Comput Appl Math. 232 (2009) 449-454. https://doi.org/10.1016/j.cam.2009.06.038
M. Erfanian, M. Gachpazan, and H. Beiglo, A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Comput. Math. Math. Phys.57 (2017) 297-305. https://doi.org/10.1134/S096554251702004X
M. Erfanian, A. Mansoori, Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. Math. Comput. Simul.165 (2019) 223-23. https://doi.org/10.1016/j.matcom.2019.03.006
M. Erfanian, H. Zeidabadi, Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra-Fredholm integral equations. Mathematical Sciences.12 (2018) 103-109. https://doi.org/10.1007/s40096-018-0249-1
M. Erfanian, H. Zeidabadi, Approximate solution of linear Volterra integro-differential equation by using cubic B-spline finite element method in the complex plane. Adv. Difference Equ.62 (2019). https://doi.org/10.1186/s13662-019-2012-9
M. Erfanian, H. Zeidabadi, solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases. Asian-Eur. J. Math.12 (2019) 103-109. https://doi.org/10.1142/S1793557119500554
J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation. Quart Appl Math. 53 (1995) 245-258. https://doi.org/10.1090/qam/1330651
M. Ghiat and H. Guebbai, Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel. Comp Appl Math 232 (2018) 1-14. https://doi.org/10.1007/s40314-018-0597-3
B. N. Mandal and A. Chakrabarti, Applied Singular Integral Equations. CRC Press, 2011.
B. G. Pachpatte, On Fredholm type integrodifferential equation. Tamkang J. Math.39 (2008) 85-94. https://doi.org/10.5556/j.tkjm.39.2008.48
C. Schneider, Product integration for weakly singular integral equations. Math Comput.36 (1981) 207-213. https://doi.org/10.1090/S0025-5718-1981-0595053-0
K. Wang, Q. Wang, and K. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear VolterraFredholm integral equation. Appl. Math. Comput.225 (1981) 631-637. https://doi.org/10.1016/j.amc.2013.09.069
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).