Investigation approach for a nonlinear singular Fredholm integro-differential equation
Résumé
In this paper, we examine the existence and uniqueness of the solution of nonlinear integro-differential Fredholm equation with a weakly singular kernel. Then, we develop an iterative scheme to approach this solution using the product integration method. Finally, we conclude with a numerical tests to show the effectiveness of the proposed method.
Téléchargements
Références
K. Atkinson and H. Han, Theoretical numerical analysis: a functional analysis framework. Springer, New York, 2001. https://doi.org/10.1007/978-0-387-21526-6
A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind. J Comput Appl Math. 232 (2009) 449-454. https://doi.org/10.1016/j.cam.2009.06.038
M. Erfanian, M. Gachpazan, and H. Beiglo, A new sequential approach for solving the integro-differential equation via Haar wavelet bases. Comput. Math. Math. Phys.57 (2017) 297-305. https://doi.org/10.1134/S096554251702004X
M. Erfanian, A. Mansoori, Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. Math. Comput. Simul.165 (2019) 223-23. https://doi.org/10.1016/j.matcom.2019.03.006
M. Erfanian, H. Zeidabadi, Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra-Fredholm integral equations. Mathematical Sciences.12 (2018) 103-109. https://doi.org/10.1007/s40096-018-0249-1
M. Erfanian, H. Zeidabadi, Approximate solution of linear Volterra integro-differential equation by using cubic B-spline finite element method in the complex plane. Adv. Difference Equ.62 (2019). https://doi.org/10.1186/s13662-019-2012-9
M. Erfanian, H. Zeidabadi, solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases. Asian-Eur. J. Math.12 (2019) 103-109. https://doi.org/10.1142/S1793557119500554
J. I. Frankel, A Galerkin solution to a regularized Cauchy singular integro-differential equation. Quart Appl Math. 53 (1995) 245-258. https://doi.org/10.1090/qam/1330651
M. Ghiat and H. Guebbai, Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel. Comp Appl Math 232 (2018) 1-14. https://doi.org/10.1007/s40314-018-0597-3
B. N. Mandal and A. Chakrabarti, Applied Singular Integral Equations. CRC Press, 2011.
B. G. Pachpatte, On Fredholm type integrodifferential equation. Tamkang J. Math.39 (2008) 85-94. https://doi.org/10.5556/j.tkjm.39.2008.48
C. Schneider, Product integration for weakly singular integral equations. Math Comput.36 (1981) 207-213. https://doi.org/10.1090/S0025-5718-1981-0595053-0
K. Wang, Q. Wang, and K. Guan, Iterative method and convergence analysis for a kind of mixed nonlinear VolterraFredholm integral equation. Appl. Math. Comput.225 (1981) 631-637. https://doi.org/10.1016/j.amc.2013.09.069
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



