Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability
Abstract
Let $x=(x_{mn})$ be a double sequence of real or complex numbers. The $A^{r,\delta}$-transform of a sequence $(x_{mn})$ is defined by
$$
(A^{r,\delta}x)_{mn}={\sigma^{r,\delta}_{mn}(x)}=\frac{1}{(m+1)(n+1)}\sum_{j=0}^{m}\sum_{k=0}^{n}(1+r^j)(1+\delta^k)x_{jk}, \ \ \ \ \ 0<r, \delta<1
$$
The $A^{r,*}$ and $A^{*,\delta}$ transformations are defined respectively by
$$
(A^{r,*}x)_{mn}={\sigma^{r,*}_{mn}(x)}=\frac{1}{m+1}\sum_{j=0}^{m}(1+r^{j})x_{jn}, \ \ \ 0<r<1,
$$
and
$$
(A^{*,\delta}x)_{mn}={\sigma^{*,\delta}_{mn}(x)}=\frac{1}{n+1}\sum_{k=0}^{n}(1+\delta^{k})x_{mk},\ \ \ 0<\delta<1.
$$
We say that $(x_{mn})$ is ($A^{r,\delta}$,1,1) summable to $l$ if $({\sigma^{r,\delta}_{mn}}(x))$ has a finite limit $l$. It is known that if $\lim_{m,n \to \infty }x_{mn}=l$ and $(x_{mn})$ is bounded, then the limit $\lim _{m,n \to \infty} \sigma_{mn}^{r,\delta}(x)=l$ exists.
But the inverse of this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for ($A^{r,\delta}$,1,1) summability method under which the inverse of this implication holds. Following Tauberian theorems for $(A^{r,\delta},1,1)$ summability method, we also introduce $A^{r,*}$ and $A^{*,\delta}$ transformations of double sequences and obtain Tauberian theorems for the $(A^{r,*},1,0)$ and $(A^{*,\delta},0,1)$ summability methods.
Downloads
References
Basar, F., A note on the triangle limitation methods, Fırat Univ. Fen. & M¨uh. Bil. Dergisi 5(1), 113-117, (1993).
Hardy, G. H., Divergent series, Chelsea, New York, (1991).
Moricz, F., Necessary and sufficient Tauberian conditions, under which convergence follows from summability (C, 1), Bull. London Math. Soc. 26(3), 288-294, (1994). DOI: https://doi.org/10.1112/blms/26.3.288
Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53(3), 289-321, (1900). DOI: https://doi.org/10.1007/BF01448977
Schmidt, R., Uber divergente Folgen und lineare Mittelbildungen, Math. Z. 22, 89-152, (1925). DOI: https://doi.org/10.1007/BF01479600
Talo, O, Ba¸sar, F., ¨ Necessary and sufficient Tauberian conditions for the Ar method of summability, Math. J. Okayama Univ. 60, 209-219, (2018).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).