Necessary and sufficient Tauberian conditions under which convergence follows from $A^{r,\delta}$ summability

Resumen

Let $x=(x_{mn})$ be a double sequence of real or complex numbers. The $A^{r,\delta}$-transform of a sequence $(x_{mn})$ is defined by
$$
(A^{r,\delta}x)_{mn}={\sigma^{r,\delta}_{mn}(x)}=\frac{1}{(m+1)(n+1)}\sum_{j=0}^{m}\sum_{k=0}^{n}(1+r^j)(1+\delta^k)x_{jk}, \ \ \ \ \ 0<r, \delta<1
$$
The $A^{r,*}$ and $A^{*,\delta}$ transformations are defined respectively by
$$
(A^{r,*}x)_{mn}={\sigma^{r,*}_{mn}(x)}=\frac{1}{m+1}\sum_{j=0}^{m}(1+r^{j})x_{jn}, \ \ \ 0<r<1,
$$
and
$$
(A^{*,\delta}x)_{mn}={\sigma^{*,\delta}_{mn}(x)}=\frac{1}{n+1}\sum_{k=0}^{n}(1+\delta^{k})x_{mk},\ \ \ 0<\delta<1.
$$

We say that $(x_{mn})$ is ($A^{r,\delta}$,1,1) summable to $l$ if $({\sigma^{r,\delta}_{mn}}(x))$ has a finite limit $l$. It is known that if $\lim_{m,n \to \infty }x_{mn}=l$ and $(x_{mn})$ is bounded, then the limit $\lim _{m,n \to \infty} \sigma_{mn}^{r,\delta}(x)=l$ exists.
But the inverse of this implication is not true in general. Our aim is to obtain necessary and sufficient conditions for ($A^{r,\delta}$,1,1) summability method under which the inverse of this implication holds. Following Tauberian theorems for $(A^{r,\delta},1,1)$ summability method, we also introduce $A^{r,*}$ and $A^{*,\delta}$ transformations of double sequences and obtain Tauberian theorems for the $(A^{r,*},1,0)$ and $(A^{*,\delta},0,1)$ summability methods.

Descargas

La descarga de datos todavía no está disponible.

Citas

Basar, F., A note on the triangle limitation methods, Fırat Univ. Fen. & M¨uh. Bil. Dergisi 5(1), 113-117, (1993).

Hardy, G. H., Divergent series, Chelsea, New York, (1991).

Moricz, F., Necessary and sufficient Tauberian conditions, under which convergence follows from summability (C, 1), Bull. London Math. Soc. 26(3), 288-294, (1994). DOI: https://doi.org/10.1112/blms/26.3.288

Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53(3), 289-321, (1900). DOI: https://doi.org/10.1007/BF01448977

Schmidt, R., Uber divergente Folgen und lineare Mittelbildungen, Math. Z. 22, 89-152, (1925). DOI: https://doi.org/10.1007/BF01479600

Talo, O, Ba¸sar, F., ¨ Necessary and sufficient Tauberian conditions for the Ar method of summability, Math. J. Okayama Univ. 60, 209-219, (2018).

Publicado
2022-12-23
Sección
Articles