Generalized lacunary statistical convergence of order β of difference sequences of fractional order
Abstract
In this paper, using a modulus function we generalize the concepts of ∆m−lacunary statistical convergence and ∆m−lacunary strongly convergence (m ∈ N) to ∆α−lacunary statistical convergence of order β with the fractional order of α and ∆α−lacunary strongly convergence of order β with the fractional order of α ( where 0 < β ≤ 1 and α be a fractional order).
Downloads
References
H. Altınok, M. Et and R. C¸ olak, Some remarks on generalized sequence space of bounded variation of sequences of fuzzy numbers. Iran. J. Fuzzy Syst. 11(5) (2014) 39-46.
N. D. Aral and M. Et, On lacunary statistical convergence of order β of difference sequences of fractional order. AIP Conf. Proc. 2183, 050002 (2019), DOI: https://doi.org/10.1063/1.5136140
P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces. Appl. Math. Comput. 219(18) (2013) 9737-9742. DOI: https://doi.org/10.1016/j.amc.2013.03.073
P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems. Quaest. Math. 41(8) (2018) 1117–1133. DOI: https://doi.org/10.2989/16073606.2017.1420705
A. Caserta, G. Di Maio and L. D. R. Koˇcinac, Statistical convergence in function spaces. Abstr. Appl. Anal. 2011 Art. ID 420419, 11 pp. DOI: https://doi.org/10.1155/2011/420419
J. S. Connor, The statistical and strong p−Ces`aro convergence of sequences. Analysis 8 (1988) 47-63. DOI: https://doi.org/10.1524/anly.1988.8.12.47
H. Cakallı, Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2) (1995) 113-119.
H. Cakallı, C. G. Aras and A. S¨onmez, Lacunary statistical ward continuity. AIP Conf. Proc. 1676, 020042 (2015), DOI: https://doi.org/10.1063/1.4930468
H. Cakallı and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(2) (2017) 71-79. DOI: https://doi.org/10.1501/Commua1_0000000802
M. Cınar, M. Karaka¸s and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory Appl. 33 (2013) 11 pp. DOI: https://doi.org/10.1186/1687-1812-2013-33
R. Colak, Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010) 121-129.
M. Et and R. C¸ olak, On some generalized difference sequence spaces. Soochow J. Math. 21(4) (1995) 377-386.
M. Et and F. Nuray, ∆m−statistical convergence. Indian J. Pure appl. Math. 32(6) (2001) 961-969.
M. Et, M. Mursaleen and M. Isık, On a class of fuzzy sets defined by Orlicz functions. Filomat 27(5) (2013) 789–796. DOI: https://doi.org/10.2298/FIL1305789M
M. Et, B. C. Tripathy and A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci. 41(3) (2014) 17-30.
M. Et, R. C¸ olak and Y. Altın, Strongly almost summable sequences of order α. Kuwait J. Sci. 41(2) (2014) 35-47.
M. Et and H. Sengul, Some Cesaro-type summability spaces of order alpha and lacunary statistical convergence of order α. Filomat 28(8) (2014) 1593-1602. DOI: https://doi.org/10.2298/FIL1408593E
M. Et and H. Sengul, On (∆m, I)−lacunary statistical convergence of order α. J. Math. Anal. 7(5) (2016) 78-84.
H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244
A. R. Freedman, J. J. Sember and M. Raphael, Some Ces`aro-type summability spaces. Proc. Lond. Math. Soc. 37(3) (1978) 508-520. DOI: https://doi.org/10.1112/plms/s3-37.3.508
J. Fridy, On statistical convergence. Analysis 5 (1985) 301-313. DOI: https://doi.org/10.1524/anly.1985.5.4.301
J. Fridy and C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160 (1993) 43-51. DOI: https://doi.org/10.2140/pjm.1993.160.43
M. Isık and K. E. Akba¸s, On λ−statistical convergence of order α in probability. J. Inequal. Spec. Funct. 8(4) (2017) 57-64. DOI: https://doi.org/10.1186/s13660-017-1512-y
M. Isık, Strongly almost (w, λ, q)-summable sequences. Math. Slovaca 61(5) (2011) 779-788. DOI: https://doi.org/10.2478/s12175-011-0045-y
U. Kadak, Generalized lacunary statistical difference sequence spaces of fractional order. Int. J. Math. Math. Sci. 2015 Art. ID 984283, 6 pp. DOI: https://doi.org/10.1155/2015/984283
M. Karaka¸s, M. Et and V. Karakaya. Some geometric properties of a new difference sequence space involving lacunary sequences. Acta Math. Sci. Ser. B (Engl. Ed.) 33(6) (2013) 1711-1720. DOI: https://doi.org/10.1016/S0252-9602(13)60117-4
H. Kızmaz, On certain sequence spaces. Canad. Math. Bull. 24(2) (1981) 169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5
M. Mursaleen, λ− statistical convergence. Math. Slovaca 50(1) (2012) 111 -115.
L. Nayak, M. Et and P. Baliarsingh, On certain generalized weighted mean fractional difference sequence spaces. Proc. Nat. Acad. Sci. India Sect. A 89(1) (2019) 163-170. DOI: https://doi.org/10.1007/s40010-017-0403-4
T. Salat, On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980) 139-150.
E. Sava¸s and M. Et, On (∆m λ , I)−statistical convergence of order α. Period. Math. Hungar. 71(2) (2015) 135-145. DOI: https://doi.org/10.1007/s10998-015-0087-y
I. J. Schoenberg, The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959) 361-375. DOI: https://doi.org/10.2307/2308747
H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 31(6) (2017) 1573-1582. DOI: https://doi.org/10.2298/FIL1706573S
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951) 73-74.
H. Sengul, Some Ces`aro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(2) (2017) 80-90. DOI: https://doi.org/10.1501/Commua1_0000000803
H. Sengul and M. Et, On lacunary statistical convergence of order α. Acta Mathematica Scientia 34(2) (2014) 473-482. DOI: https://doi.org/10.1016/S0252-9602(14)60021-7
H. Sengul and M. Et, On I−lacunary statistical convergence of order α of sequences of sets. Filomat 31(8) (2017) 2403-2412. DOI: https://doi.org/10.2298/FIL1708403S
H. Sengul and M. Et, f−lacunary statistical convergence and strong f−lacunary summability of order α. Filomat 32(13) (2018) 4513-4521. DOI: https://doi.org/10.2298/FIL1813513S
B. C. Tripathy and M. Et, On generalized difference lacunary statistical convergence. Studia Univ. Babe¸s-Bolyai Math. 50(1) (2005) 119-130.
A. Zygmund, Trigonometric Series. Cambridge University Press, Cambridge, UK, 1979.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).