Generalized lacunary statistical convergence of order β of difference sequences of fractional order
Résumé
In this paper, using a modulus function we generalize the concepts of ∆m−lacunary statistical convergence and ∆m−lacunary strongly convergence (m ∈ N) to ∆α−lacunary statistical convergence of order β with the fractional order of α and ∆α−lacunary strongly convergence of order β with the fractional order of α ( where 0 < β ≤ 1 and α be a fractional order).
Téléchargements
Références
H. Altınok, M. Et and R. C¸ olak, Some remarks on generalized sequence space of bounded variation of sequences of fuzzy numbers. Iran. J. Fuzzy Syst. 11(5) (2014) 39-46.
N. D. Aral and M. Et, On lacunary statistical convergence of order β of difference sequences of fractional order. AIP Conf. Proc. 2183, 050002 (2019), DOI: https://doi.org/10.1063/1.5136140
P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces. Appl. Math. Comput. 219(18) (2013) 9737-9742. DOI: https://doi.org/10.1016/j.amc.2013.03.073
P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems. Quaest. Math. 41(8) (2018) 1117–1133. DOI: https://doi.org/10.2989/16073606.2017.1420705
A. Caserta, G. Di Maio and L. D. R. Koˇcinac, Statistical convergence in function spaces. Abstr. Appl. Anal. 2011 Art. ID 420419, 11 pp. DOI: https://doi.org/10.1155/2011/420419
J. S. Connor, The statistical and strong p−Ces`aro convergence of sequences. Analysis 8 (1988) 47-63. DOI: https://doi.org/10.1524/anly.1988.8.12.47
H. Cakallı, Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2) (1995) 113-119.
H. Cakallı, C. G. Aras and A. S¨onmez, Lacunary statistical ward continuity. AIP Conf. Proc. 1676, 020042 (2015), DOI: https://doi.org/10.1063/1.4930468
H. Cakallı and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(2) (2017) 71-79. DOI: https://doi.org/10.1501/Commua1_0000000802
M. Cınar, M. Karaka¸s and M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory Appl. 33 (2013) 11 pp. DOI: https://doi.org/10.1186/1687-1812-2013-33
R. Colak, Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, (2010) 121-129.
M. Et and R. C¸ olak, On some generalized difference sequence spaces. Soochow J. Math. 21(4) (1995) 377-386.
M. Et and F. Nuray, ∆m−statistical convergence. Indian J. Pure appl. Math. 32(6) (2001) 961-969.
M. Et, M. Mursaleen and M. Isık, On a class of fuzzy sets defined by Orlicz functions. Filomat 27(5) (2013) 789–796. DOI: https://doi.org/10.2298/FIL1305789M
M. Et, B. C. Tripathy and A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings. Kuwait J. Sci. 41(3) (2014) 17-30.
M. Et, R. C¸ olak and Y. Altın, Strongly almost summable sequences of order α. Kuwait J. Sci. 41(2) (2014) 35-47.
M. Et and H. Sengul, Some Cesaro-type summability spaces of order alpha and lacunary statistical convergence of order α. Filomat 28(8) (2014) 1593-1602. DOI: https://doi.org/10.2298/FIL1408593E
M. Et and H. Sengul, On (∆m, I)−lacunary statistical convergence of order α. J. Math. Anal. 7(5) (2016) 78-84.
H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1951) 241-244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244
A. R. Freedman, J. J. Sember and M. Raphael, Some Ces`aro-type summability spaces. Proc. Lond. Math. Soc. 37(3) (1978) 508-520. DOI: https://doi.org/10.1112/plms/s3-37.3.508
J. Fridy, On statistical convergence. Analysis 5 (1985) 301-313. DOI: https://doi.org/10.1524/anly.1985.5.4.301
J. Fridy and C. Orhan, Lacunary statistical convergence. Pacific J. Math. 160 (1993) 43-51. DOI: https://doi.org/10.2140/pjm.1993.160.43
M. Isık and K. E. Akba¸s, On λ−statistical convergence of order α in probability. J. Inequal. Spec. Funct. 8(4) (2017) 57-64. DOI: https://doi.org/10.1186/s13660-017-1512-y
M. Isık, Strongly almost (w, λ, q)-summable sequences. Math. Slovaca 61(5) (2011) 779-788. DOI: https://doi.org/10.2478/s12175-011-0045-y
U. Kadak, Generalized lacunary statistical difference sequence spaces of fractional order. Int. J. Math. Math. Sci. 2015 Art. ID 984283, 6 pp. DOI: https://doi.org/10.1155/2015/984283
M. Karaka¸s, M. Et and V. Karakaya. Some geometric properties of a new difference sequence space involving lacunary sequences. Acta Math. Sci. Ser. B (Engl. Ed.) 33(6) (2013) 1711-1720. DOI: https://doi.org/10.1016/S0252-9602(13)60117-4
H. Kızmaz, On certain sequence spaces. Canad. Math. Bull. 24(2) (1981) 169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5
M. Mursaleen, λ− statistical convergence. Math. Slovaca 50(1) (2012) 111 -115.
L. Nayak, M. Et and P. Baliarsingh, On certain generalized weighted mean fractional difference sequence spaces. Proc. Nat. Acad. Sci. India Sect. A 89(1) (2019) 163-170. DOI: https://doi.org/10.1007/s40010-017-0403-4
T. Salat, On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980) 139-150.
E. Sava¸s and M. Et, On (∆m λ , I)−statistical convergence of order α. Period. Math. Hungar. 71(2) (2015) 135-145. DOI: https://doi.org/10.1007/s10998-015-0087-y
I. J. Schoenberg, The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959) 361-375. DOI: https://doi.org/10.2307/2308747
H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α. Filomat 31(6) (2017) 1573-1582. DOI: https://doi.org/10.2298/FIL1706573S
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951) 73-74.
H. Sengul, Some Ces`aro-type summability spaces defined by a modulus function of order (α, β). Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 66(2) (2017) 80-90. DOI: https://doi.org/10.1501/Commua1_0000000803
H. Sengul and M. Et, On lacunary statistical convergence of order α. Acta Mathematica Scientia 34(2) (2014) 473-482. DOI: https://doi.org/10.1016/S0252-9602(14)60021-7
H. Sengul and M. Et, On I−lacunary statistical convergence of order α of sequences of sets. Filomat 31(8) (2017) 2403-2412. DOI: https://doi.org/10.2298/FIL1708403S
H. Sengul and M. Et, f−lacunary statistical convergence and strong f−lacunary summability of order α. Filomat 32(13) (2018) 4513-4521. DOI: https://doi.org/10.2298/FIL1813513S
B. C. Tripathy and M. Et, On generalized difference lacunary statistical convergence. Studia Univ. Babe¸s-Bolyai Math. 50(1) (2005) 119-130.
A. Zygmund, Trigonometric Series. Cambridge University Press, Cambridge, UK, 1979.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).