$\eta$-Ricci soliton in an indefinite Trans-Sasakian manifold admitting semi-symmetric metric connection
Abstract
In this paper, we intend to study some of the curvature tensor of $\eta$-Ricci solitons of indefinite Trans-Sasakian manifold admitting semi-symmetric metric connection.
Downloads
References
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer Verlag, 1976. DOI: https://doi.org/10.1007/BFb0079307
C. Calin and M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl., 57(1) (2012), 55-63.
J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2009), 205-212. DOI: https://doi.org/10.2748/tmj/1245849443
R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-261. DOI: https://doi.org/10.1090/conm/071/954419
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17(2) (1982), 255-306. DOI: https://doi.org/10.4310/jdg/1214436922
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, eprint: https://arxiv.org/abs/math/0211159
G. Perelman, Ricci flow with surgery on three-manifolds, eprint: https://arxiv.org/abs/math/0303109
R. Prasad and S. Kumar, Indefinite trans-Sasakian manifold with semi-symmetric metric connection, Tbil. Math. J., 8(2) (2015), 233-255. DOI: https://doi.org/10.1515/tmj-2015-0025
G. Somashekhara, N. Pavani and P. S. K. Reddy, Invariant Sub-manifolds of LP-Sasakian Manifolds with SemiSymmetric Connection, Bull. Math. Anal. Appl., 12(2) (2020), 35-44.
G. Somashekhara, S. Girish Babu and P. S. K. Reddy, C-Bochner Curvature Tensor under D-Homothetic Deformation in LP-Sasakian Manifolds, Bull. Int. Math. Virtual Inst., 11(1) (2021), 91-98.
G. Somashekhara, S. Girish Babu and P. S. K. Reddy, Indefinite Sasakian Manifold with Quarter-Symmetric Metric Connection, Proceedings of the Jangjeon Math. Soc., 24(1) (2021), 91-98.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).