$\eta$-Ricci soliton in an indefinite Trans-Sasakian manifold admitting semi-symmetric metric connection
Résumé
In this paper, we intend to study some of the curvature tensor of $\eta$-Ricci solitons of indefinite Trans-Sasakian manifold admitting semi-symmetric metric connection.
Téléchargements
Références
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer Verlag, 1976. DOI: https://doi.org/10.1007/BFb0079307
C. Calin and M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl., 57(1) (2012), 55-63.
J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2009), 205-212. DOI: https://doi.org/10.2748/tmj/1245849443
R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-261. DOI: https://doi.org/10.1090/conm/071/954419
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17(2) (1982), 255-306. DOI: https://doi.org/10.4310/jdg/1214436922
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, eprint: https://arxiv.org/abs/math/0211159
G. Perelman, Ricci flow with surgery on three-manifolds, eprint: https://arxiv.org/abs/math/0303109
R. Prasad and S. Kumar, Indefinite trans-Sasakian manifold with semi-symmetric metric connection, Tbil. Math. J., 8(2) (2015), 233-255. DOI: https://doi.org/10.1515/tmj-2015-0025
G. Somashekhara, N. Pavani and P. S. K. Reddy, Invariant Sub-manifolds of LP-Sasakian Manifolds with SemiSymmetric Connection, Bull. Math. Anal. Appl., 12(2) (2020), 35-44.
G. Somashekhara, S. Girish Babu and P. S. K. Reddy, C-Bochner Curvature Tensor under D-Homothetic Deformation in LP-Sasakian Manifolds, Bull. Int. Math. Virtual Inst., 11(1) (2021), 91-98.
G. Somashekhara, S. Girish Babu and P. S. K. Reddy, Indefinite Sasakian Manifold with Quarter-Symmetric Metric Connection, Proceedings of the Jangjeon Math. Soc., 24(1) (2021), 91-98.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).