First module cohomology group of induced semigroup algebras
Abstract
Let $S$ be a discrete semigroup and $T$ be a left multiplier operator on $S$. A new product on $S$ defined by $T$ creates a new induced semigroup $S _{T} $. In this paper, we show that if $T$ is bijective, then the first module cohomology groups $ \HH_{\ell^1(E)}^{1}(\ell^1(S), \ell^{\infty}(S))$ and $ \HH_{\ell^1(E_{T})}^{1}(\ell^1({S_{T}}), \ell^{\infty}(S_{T})) $ are equal, where $E$ and $E_{T}$ are sets of idempotent elements in $S$ and $S _{T}$, respectively. Which in particular means that $\ell^1(S)$ is weak $\ell^1(E)$-module amenable if and only if $\ell^1(S_T)$ is weak $\ell^1(E_T)$-module amenable. Finally, by giving an example, we show that the condition of bijectivity for $T$, is necessary.
Downloads
References
M. Amini, Module amenability for semigroup algebra, Semigroup Forum. 69, 243-254, (2004). DOI: https://doi.org/10.1007/s00233-004-0107-3
M. Amini and D. E. Bagha, Weak module amenability for semigroup algebra, Semigroup Forum. 71, 18-26, (2005). DOI: https://doi.org/10.1007/s00233-004-0166-5
F. T. Birtel, Banach algebras of multipliers, Duke Math. J. 28, 203-211, (1961). DOI: https://doi.org/10.1215/S0012-7094-61-02818-6
G. H. Esslamzade, Ideal and representions of certain semigroup algebras, Semigroup Forum. 69, 51-62, (2004). DOI: https://doi.org/10.1007/s00233-003-0020-1
J. Laali, The multipliers related products in Banach algebras, Quaestiones Mathematicae. 37, 1-17, (2014). DOI: https://doi.org/10.2989/16073606.2013.779988
R. Larsen, An introduction to the theory of multipliers, Springer-verlag, New York, (1971). DOI: https://doi.org/10.1007/978-3-642-65030-7
E. Nasrabadi and A. Pourabbas, Module cohomology group of inverse semigroup algebra, Bulletin of Iranian Mathematical Society. 37(4), 157-169, (2011).
E. Nasrabadi and A. Pourabbas, Second Module cohomology group of inverse semigroup algebra, Semigroup Forum. 81(1), 269-278, (2010). DOI: https://doi.org/10.1007/s00233-010-9228-z
A. L. T. Paterson, Amenability, American Mathematical Society, (1988). DOI: https://doi.org/10.1090/surv/029
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).