First module cohomology group of induced semigroup algebras

Resumo

‎Let $S$ be a discrete semigroup and $T$ be a left multiplier operator on $S$‎. ‎A new product on $S$ defined by $T$ creates a new induced semigroup $S _{T} $‎. ‎In this paper‎, ‎we show that if $T$ is bijective‎, ‎then the first module cohomology groups $ \HH_{\ell^1(E)}^{1}(\ell^1(S)‎, ‎\ell^{\infty}(S))$ and $ \HH_{\ell^1(E_{T})}^{1}(\ell^1({S_{T}})‎, ‎\ell^{\infty}(S_{T})) $ are equal‎, ‎where $E$ and $E_{T}$ are sets of idempotent elements in $S$ and $S _{T}$‎, ‎respectively‎. ‎Which in particular means that $\ell^1(S)$ is weak $\ell^1(E)$-module amenable if and only if $\ell^1(S_T)$ is weak $\ell^1(E_T)$-module amenable‎. ‎Finally‎, ‎by giving an example‎, ‎we show that the condition of bijectivity for $T$‎, ‎is necessary‎.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ebrahim Nasrabadi, University of Birjand

Faculty of Mathematics Science and Statistics, ‎Department of Mathematics

Referências

M. Amini, Module amenability for semigroup algebra, Semigroup Forum. 69, 243-254, (2004). DOI: https://doi.org/10.1007/s00233-004-0107-3

M. Amini and D. E. Bagha, Weak module amenability for semigroup algebra, Semigroup Forum. 71, 18-26, (2005). DOI: https://doi.org/10.1007/s00233-004-0166-5

F. T. Birtel, Banach algebras of multipliers, Duke Math. J. 28, 203-211, (1961). DOI: https://doi.org/10.1215/S0012-7094-61-02818-6

G. H. Esslamzade, Ideal and representions of certain semigroup algebras, Semigroup Forum. 69, 51-62, (2004). DOI: https://doi.org/10.1007/s00233-003-0020-1

J. Laali, The multipliers related products in Banach algebras, Quaestiones Mathematicae. 37, 1-17, (2014). DOI: https://doi.org/10.2989/16073606.2013.779988

R. Larsen, An introduction to the theory of multipliers, Springer-verlag, New York, (1971). DOI: https://doi.org/10.1007/978-3-642-65030-7

E. Nasrabadi and A. Pourabbas, Module cohomology group of inverse semigroup algebra, Bulletin of Iranian Mathematical Society. 37(4), 157-169, (2011).

E. Nasrabadi and A. Pourabbas, Second Module cohomology group of inverse semigroup algebra, Semigroup Forum. 81(1), 269-278, (2010). DOI: https://doi.org/10.1007/s00233-010-9228-z

A. L. T. Paterson, Amenability, American Mathematical Society, (1988). DOI: https://doi.org/10.1090/surv/029

Publicado
2022-12-26
Seção
Artigos