Further results on strong λ-statistical convergence of sequences in probabilistic metric spaces
Abstract
In this paper we study some basic properties of strong λ-statistical convergence of sequences in probabilistic metric spaces. Also introducing the concept of strong λ-statistically Cauchy sequences we study its relationship with strong λ-statistical convergence in a probabilistic metric space. Further introducing the notions of strong λ-statistical limit point and strong λ-statistical cluster point of a sequence in a probabilistic metric space we examine their interrelationship.
Downloads
References
Connor, J., Fridy, J., Kline, J., Statistically pre-Cauchy Sequences, Analysis 14, 311-317, (1994). https://doi.org/10.1524/anly.1994.14.4.311
Connor, J., R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, Proc. Amer. Math. Soc. 115, 319-327, (1992). https://doi.org/10.1090/S0002-9939-1992-1095221-7
Connor, J., The statistical and strong P-Cesaro convergence of sequences, Analysis 8, 47-63, (1988). https://doi.org/10.1524/anly.1988.8.12.47
Das, P., Dutta, K., Karakaya, V., Ghosal, S., On some further generalizations of strong convergence in probabilistic metric spaces using ideals, Abstract and App. Anal. DOI: 10.1155/2013/765060, (2013). https://doi.org/10.1155/2013/765060
Dems, K., On I-Cauchy sequences, Real Analysis Exchange 30(1), 123-128, (2004). https://doi.org/10.14321/realanalexch.30.1.0123
Dutta, K., Malik, P., Maity, M., Statistical Convergence of Double Sequences in Probabilistic Metric Spaces, Sel¸cuk J. Appl. Math. 14(1), 57-70, (2013).
Fast, H., Sur la convergence statistique, Colloq. Math 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244
Fridy, J. A., On statistical convergence, Analysis 5, 301-313, (1985). https://doi.org/10.1524/anly.1985.5.4.301
Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc. 118(4), 1187-1192, (1993). https://doi.org/10.1090/S0002-9939-1993-1181163-6
Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625-3631, (1997). https://doi.org/10.1090/S0002-9939-97-04000-8
Karakus, S., Statistical convergence on probabilistic normed spaces, Math. Commun. 12, 11-23, (2007). https://doi.org/10.1155/2007/14737
Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA 28, 535-537, (1942). https://doi.org/10.1073/pnas.28.12.535
Mursaleen, M., λ-statistical convergence, Mathematica Slovaca 50(1), 111-115, (2000).
Pehlivan, S., Guncan, A., Mamedov, M. A., Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Mathematical Journal 54(129), 95-102, (2004). https://doi.org/10.1023/B:CMAJ.0000027250.19041.72
S'alat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30, 139-150, (1980).
Savas, E., Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett. 24, 826-830, (2011). https://doi.org/10.1016/j.aml.2010.12.022
Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66, 361-375, (1959). https://doi.org/10.2307/2308747
Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math. 10, 314-334, (1960). https://doi.org/10.2140/pjm.1960.10.313
Schweizer, B., Sklar, A., Thorp, E., The metrization of statistical metric spaces, Pacific J. Math. 10, 673-675, (1960). https://doi.org/10.2140/pjm.1960.10.673
Schweizer, B., Sklar, A., Statistical metric spaces arising from sets of random variables in Euclidean n-space, Theory of probability and its Applications 7, 447-456, (1962). https://doi.org/10.1137/1107042
Schweizer, B., Sklar, A., Tringle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38, 401-406,(1963). https://doi.org/10.1112/jlms/s1-38.1.401
Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford (1983).
S¸en¸cimen, C., Pehlivan, S., Strong statistical convergence in probabilistic metric space, Stoch. Anal. Appl. 26, 651-664, (2008). https://doi.org/10.1080/07362990802007251
Steinhus, H., Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2, 73-74, (1951).
Tardiff, R. M., Topologies for Probabilistic Metric spaces, Pacific J. Math. 65, 233-251, (1976). https://doi.org/10.2140/pjm.1976.65.233
Thorp, E., Generalized topologies for statistical metric spaces, Fundamenta Mathematicae 51, 9-21, (1962). https://doi.org/10.4064/fm-51-1-9-21
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).