Further results on strong λ-statistical convergence of sequences in probabilistic metric spaces

Résumé

In this paper we study some basic properties of strong λ-statistical convergence of sequences in probabilistic metric spaces. Also introducing the concept of strong λ-statistically Cauchy sequences we study its relationship with strong λ-statistical convergence in a probabilistic metric space. Further introducing the notions of strong λ-statistical limit point and strong λ-statistical cluster point of a sequence in a probabilistic metric space we examine their interrelationship.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Prasanta Malik, The University of Burdwan

Department of Mathematics

Samiran Das, The University of Burdwan

Department of Mathematics

Références

Connor, J., Fridy, J., Kline, J., Statistically pre-Cauchy Sequences, Analysis 14, 311-317, (1994). https://doi.org/10.1524/anly.1994.14.4.311

Connor, J., R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, Proc. Amer. Math. Soc. 115, 319-327, (1992). https://doi.org/10.1090/S0002-9939-1992-1095221-7

Connor, J., The statistical and strong P-Cesaro convergence of sequences, Analysis 8, 47-63, (1988). https://doi.org/10.1524/anly.1988.8.12.47

Das, P., Dutta, K., Karakaya, V., Ghosal, S., On some further generalizations of strong convergence in probabilistic metric spaces using ideals, Abstract and App. Anal. DOI: 10.1155/2013/765060, (2013). https://doi.org/10.1155/2013/765060

Dems, K., On I-Cauchy sequences, Real Analysis Exchange 30(1), 123-128, (2004). https://doi.org/10.14321/realanalexch.30.1.0123

Dutta, K., Malik, P., Maity, M., Statistical Convergence of Double Sequences in Probabilistic Metric Spaces, Sel¸cuk J. Appl. Math. 14(1), 57-70, (2013).

Fast, H., Sur la convergence statistique, Colloq. Math 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244

Fridy, J. A., On statistical convergence, Analysis 5, 301-313, (1985). https://doi.org/10.1524/anly.1985.5.4.301

Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc. 118(4), 1187-1192, (1993). https://doi.org/10.1090/S0002-9939-1993-1181163-6

Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625-3631, (1997). https://doi.org/10.1090/S0002-9939-97-04000-8

Karakus, S., Statistical convergence on probabilistic normed spaces, Math. Commun. 12, 11-23, (2007). https://doi.org/10.1155/2007/14737

Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA 28, 535-537, (1942). https://doi.org/10.1073/pnas.28.12.535

Mursaleen, M., λ-statistical convergence, Mathematica Slovaca 50(1), 111-115, (2000).

Pehlivan, S., Guncan, A., Mamedov, M. A., Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Mathematical Journal 54(129), 95-102, (2004). https://doi.org/10.1023/B:CMAJ.0000027250.19041.72

S'alat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30, 139-150, (1980).

Savas, E., Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett. 24, 826-830, (2011). https://doi.org/10.1016/j.aml.2010.12.022

Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66, 361-375, (1959). https://doi.org/10.2307/2308747

Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math. 10, 314-334, (1960). https://doi.org/10.2140/pjm.1960.10.313

Schweizer, B., Sklar, A., Thorp, E., The metrization of statistical metric spaces, Pacific J. Math. 10, 673-675, (1960). https://doi.org/10.2140/pjm.1960.10.673

Schweizer, B., Sklar, A., Statistical metric spaces arising from sets of random variables in Euclidean n-space, Theory of probability and its Applications 7, 447-456, (1962). https://doi.org/10.1137/1107042

Schweizer, B., Sklar, A., Tringle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38, 401-406,(1963). https://doi.org/10.1112/jlms/s1-38.1.401

Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford (1983).

S¸en¸cimen, C., Pehlivan, S., Strong statistical convergence in probabilistic metric space, Stoch. Anal. Appl. 26, 651-664, (2008). https://doi.org/10.1080/07362990802007251

Steinhus, H., Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2, 73-74, (1951).

Tardiff, R. M., Topologies for Probabilistic Metric spaces, Pacific J. Math. 65, 233-251, (1976). https://doi.org/10.2140/pjm.1976.65.233

Thorp, E., Generalized topologies for statistical metric spaces, Fundamenta Mathematicae 51, 9-21, (1962). https://doi.org/10.4064/fm-51-1-9-21

Publiée
2022-12-23
Rubrique
Articles