Further results on strong λ-statistical convergence of sequences in probabilistic metric spaces
Résumé
In this paper we study some basic properties of strong λ-statistical convergence of sequences in probabilistic metric spaces. Also introducing the concept of strong λ-statistically Cauchy sequences we study its relationship with strong λ-statistical convergence in a probabilistic metric space. Further introducing the notions of strong λ-statistical limit point and strong λ-statistical cluster point of a sequence in a probabilistic metric space we examine their interrelationship.
Téléchargements
Références
Connor, J., Fridy, J., Kline, J., Statistically pre-Cauchy Sequences, Analysis 14, 311-317, (1994). https://doi.org/10.1524/anly.1994.14.4.311
Connor, J., R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, Proc. Amer. Math. Soc. 115, 319-327, (1992). https://doi.org/10.1090/S0002-9939-1992-1095221-7
Connor, J., The statistical and strong P-Cesaro convergence of sequences, Analysis 8, 47-63, (1988). https://doi.org/10.1524/anly.1988.8.12.47
Das, P., Dutta, K., Karakaya, V., Ghosal, S., On some further generalizations of strong convergence in probabilistic metric spaces using ideals, Abstract and App. Anal. DOI: 10.1155/2013/765060, (2013). https://doi.org/10.1155/2013/765060
Dems, K., On I-Cauchy sequences, Real Analysis Exchange 30(1), 123-128, (2004). https://doi.org/10.14321/realanalexch.30.1.0123
Dutta, K., Malik, P., Maity, M., Statistical Convergence of Double Sequences in Probabilistic Metric Spaces, Sel¸cuk J. Appl. Math. 14(1), 57-70, (2013).
Fast, H., Sur la convergence statistique, Colloq. Math 2, 241-244, (1951). https://doi.org/10.4064/cm-2-3-4-241-244
Fridy, J. A., On statistical convergence, Analysis 5, 301-313, (1985). https://doi.org/10.1524/anly.1985.5.4.301
Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc. 118(4), 1187-1192, (1993). https://doi.org/10.1090/S0002-9939-1993-1181163-6
Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625-3631, (1997). https://doi.org/10.1090/S0002-9939-97-04000-8
Karakus, S., Statistical convergence on probabilistic normed spaces, Math. Commun. 12, 11-23, (2007). https://doi.org/10.1155/2007/14737
Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA 28, 535-537, (1942). https://doi.org/10.1073/pnas.28.12.535
Mursaleen, M., λ-statistical convergence, Mathematica Slovaca 50(1), 111-115, (2000).
Pehlivan, S., Guncan, A., Mamedov, M. A., Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Mathematical Journal 54(129), 95-102, (2004). https://doi.org/10.1023/B:CMAJ.0000027250.19041.72
S'alat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30, 139-150, (1980).
Savas, E., Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett. 24, 826-830, (2011). https://doi.org/10.1016/j.aml.2010.12.022
Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66, 361-375, (1959). https://doi.org/10.2307/2308747
Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math. 10, 314-334, (1960). https://doi.org/10.2140/pjm.1960.10.313
Schweizer, B., Sklar, A., Thorp, E., The metrization of statistical metric spaces, Pacific J. Math. 10, 673-675, (1960). https://doi.org/10.2140/pjm.1960.10.673
Schweizer, B., Sklar, A., Statistical metric spaces arising from sets of random variables in Euclidean n-space, Theory of probability and its Applications 7, 447-456, (1962). https://doi.org/10.1137/1107042
Schweizer, B., Sklar, A., Tringle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38, 401-406,(1963). https://doi.org/10.1112/jlms/s1-38.1.401
Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North Holland: New York, Amsterdam, Oxford (1983).
S¸en¸cimen, C., Pehlivan, S., Strong statistical convergence in probabilistic metric space, Stoch. Anal. Appl. 26, 651-664, (2008). https://doi.org/10.1080/07362990802007251
Steinhus, H., Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2, 73-74, (1951).
Tardiff, R. M., Topologies for Probabilistic Metric spaces, Pacific J. Math. 65, 233-251, (1976). https://doi.org/10.2140/pjm.1976.65.233
Thorp, E., Generalized topologies for statistical metric spaces, Fundamenta Mathematicae 51, 9-21, (1962). https://doi.org/10.4064/fm-51-1-9-21
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).