On the existence solutions for some Nonlinear elliptic problem
Abstract
In the present paper, we study the existence and regularity of positive solutions for the following boundary value problem : $\mathrm{-div}\> \big( \lvert\nabla u\rvert^{p-2}\nabla u ) + u^{s} = \dfrac{f}{u^{\alpha}}\mbox{ in } \Omega \mbox{ and } u=0\mbox{ on } \partial\Omega,$ where $ \Omega $ is an open and bounded subset of $ \mathbb{R}^{N} $ $ (N> p>1) $, $ 0<\alpha\leq 1 $, $ s\geq 1 $ and $f$ is a nonnegative function that belongs to some Lebesgue space.
Downloads
References
Akdim. Y, Benkirane. A and El Moumni. M, Solutions of nonlinear elliptic problems withlower order terms, Ann. Funct. Anal. 6, no. 1, 34-53 (2015). https://doi.org/10.15352/afa/06-1-4
Ambrosetti. A, Brezis. H and Cerami. G, Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519-543 (1994). https://doi.org/10.1006/jfan.1994.1078
Benkirane. A, El Haji. B and El Moumni. M, On the existence of solution for degenerate parabolic equations with singular terms. Pure and Applied Mathematics Quarterly Volume 14, Number 3-4, (2018), 591-606 https://doi.org/10.4310/PAMQ.2018.v14.n3.a8
Boccardo. L, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Ann Mat. Pura Appl. (4 ) 188, no. 4, pp. 591-601 (2009). https://doi.org/10.1007/s10231-008-0090-5
Boccardo. L and F. Murat. F, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Analysis 19 (1992) 581-597. https://doi.org/10.1016/0362-546X(92)90023-8
Boccardo. L, Gallouet. T, Vazquez. J. L, Nonlinear elliptic equations in RN without growth restrictions on the data, J. Differential Equations 105, no. 2, pp. 334-363 (1993). https://doi.org/10.1006/jdeq.1993.1092
Boccardo. L and Orsina. L, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37, pp. 363-380 (2009). https://doi.org/10.1007/s00526-009-0266-x
Callegari. A and Nashman. A, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38(2), 275-281 (1980). https://doi.org/10.1137/0138024
Canino. A, Sciunzi. B and Trombetta. A, Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl. 23, pp. 8-18 (2016). https://doi.org/10.1007/s00030-016-0361-6
Cirmi. R, Regularity of the solutions to nonlinear elliptic equations with a lower-order term, Nonlinear Anal. T.M.A. 25, pp. 569-580 (1995). https://doi.org/10.1016/0362-546X(94)00173-F
Chu. Y, Gao. R and Sun. y, Existence and regularity of solutions to a quasilinear elliptic problem involving variable sources, Boundary Value Problems 2017:155. https://doi.org/10.1186/s13661-017-0888-4
Dall'Aglio. A, Orsina. L and Petitta. F, Existence of solutions for degenerate parabolic equations with singular terms. Nonlinear Anal. 131, 273-288 (2016). https://doi.org/10.1016/j.na.2015.06.030
De Cave. L, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (3-4), pp. 181-195(2013). https://doi.org/10.3233/ASY-131173
De Cave. L and F. Oliva. F, On the regularizing effet of some absorption and singular lower order terms in classical Dirichlet problems with L1 data, JEPE. Vol 2, p. 73-85 (2016). https://doi.org/10.1007/BF03377393
El Haji. B, El Moumni. M and Kouhaila. K, On a nonlinear elliptic problems having large monotonocity with L1 data in weighted Orlicz-Sobolev spaces. Moroccan J. of Pure and Appl. Anal. (MJPAA) Vol 5(1), (2019), 104-116. https://doi.org/10.2478/mjpaa-2019-0008
El Moumni. M, Nonlinear Elliptic Equations Without Sign Condition and L1 -Data in Musielak-Orlicz-Sobolev Spaces, Acta Applicandae Mathematicae https://doi.org/10.1007/s10440-018-0186-x
Keller. H. B and Cohen. D. S, Some positive problems suggested by nonlinear heat generators. J. Math. Mech. 16(12), 1361-1376 (1967). https://doi.org/10.1512/iumj.1967.16.16087
Leray. J and Lions. J- L, Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93, pp. 97-107 (1965). https://doi.org/10.24033/bsmf.1617
Maso. G. D, Murat. F, Orsina. L and Prignet. A , Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 28(4), 741-808 (1999).
Oliva. F and Petitta. F, Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness. J. Differential Equations 264, no. 1, 311-340 (2018). https://doi.org/10.1016/j.jde.2017.09.008
Oliva. F and Petitta. F, On singular elliptic equations with measure sources. ESAIM Control Optim. Calc. Var. 22, no. 1, 289-308 (2016). https://doi.org/10.1051/cocv/2015004
Stampacchia. G, Equations elliptiques du second ordre a coeficients discontinus, Les Presses de l'Universite de Montreal 1966.
Vazquez. J. L, A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Appl. Math. Optim., 12, pp. 191-202 (1984). https://doi.org/10.1007/BF01449041
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).