Independence and inverse domination in complete z-ary tree and Jahangir graphs
Abstract
This article includes different properties of the independence and domination (total domination, independent domination, co-independent domination) number of the complete z-ray root and Jahangir graphs. Also, the inverse domination number of these graphs of variant dominating sets (total dominating, independent dominating, co-independent dominating) is determined.
Downloads
References
M. N. Al-Harere, A. A.Omran , Binary operation graphs, AIP conference proceeding Vol. 2086, Maltepe University, Istanbul, Turkey, 030008,31July -6August ,(2018). DOI: https://doi.org/10.1063/1.5095093
M. N. Al-Harere, A. A.Omran , On binary operation graphs, Boletim da Sociedade Paranaense de Matematica, Vol 38No 7, 59-67, (2020). DOI: https://doi.org/10.5269/bspm.v38i7.44282
M. A. Abbood, A. A. AL-Swidi, and A. A. Omran, Study of Some Graphs Types via. Soft Graph , ARPN Journal of Engineering and Applied Sciences, 14(Special Issue 8), pp. 10375-10379, (2019). DOI: https://doi.org/10.36478/jeasci.2019.10375.10379
B. Gayathri and S.Kaspar, Connected Co-Independence Domination of a Graph, Int.j.Contemp.Math.Sciences, 6(9), 423-429,(2011).
F. Harary, Graph Theory, Addison-Wesley, Reading Mass (1969). DOI: https://doi.org/10.21236/AD0705364
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs , Marcel Dekker, Inc., New York (1998).
D. A. Mojdeh and A. N. Ghameshlou,Domination in Jahangir Graph J2,m ,Int. J. Contemp. Math. Sciences, 2(24),1193–199, (2007). DOI: https://doi.org/10.12988/ijcms.2007.07122
T. A. Ibrahim and A. A. Omran,Restrained Whole Domination in Graphs , J. Phys.: Conf. Ser. 1879 (2021) 032029 DOI: https://doi.org/10.1088/1742-6596/1879/3/032029
A. A. Jabor.and A. A. Omran, Topological domination in graph theory, AIP Conference Proceedings 2334, 020010 (2021). DOI: https://doi.org/10.1063/5.0042840
E. Sampathkumar and H. B. Walikar, The Connected Domination Number of a Graph , J. Math. Phys. Sci., 13, 607-613, (1979).
N. D. Soner , B. V. Dhananjaya Murthy and G.Deepak, Total Co-Independence Domination of Graphs, Applied Mathematical Sciences, 6(131) 6545-6551, (2012).
A. A. Omran, M. N. Al-Harere,and Sahib Sh. Kahat, Equality co-neighborhood domination in graphs, Discrete Mathematics, Algorithms and Applications, (2021). DOI: https://doi.org/10.1142/S1793830921500981
A. A. Omran and T. A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl. 12 No. 1, 727-734,(2021).
S. S. Kahat, A. A. Omran and M. N. Al-Harere, Fuzzy equality co-neighbourhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 No. 2, 537-545,(2021).
S. H. Talib, A. A. Omran , and Y. Rajihy, Inverse Frame Domination in Graphs , IOP Conf. Ser.: Mater. Sci. Eng. 928 042024, (2020). DOI: https://doi.org/10.1088/1757-899X/928/4/042024
S. H. Talib, A. A. Omran , and Y. Rajihy, Additional Properties of Frame Domination in Graphs, J. Phys.: Conf. Ser. 1664 012026, ((2020). DOI: https://doi.org/10.1088/1742-6596/1664/1/012026
H. J. Yousif and A. A. Omran, Closed Fuzzy Dominating Set in Fuzzy Graphs, J. Phys.: Conf. Ser. 1879 (2021). DOI: https://doi.org/10.1088/1742-6596/1879/3/032022
H. J. Yousif and A. A. Omran, Some Results On The N-Fuzzy Domination in Fuzzy Graphs , J. Phys.: Conf. Ser. 1879 (2021). DOI: https://doi.org/10.1088/1742-6596/1879/3/032009
H. J. Yousif and A. A. Omran, Inverse 2- Anti Fuzzy Domination in Anti fuzzy graphs, IOP Publishing Journal of Physics: Conference Series 1818 (2021). DOI: https://doi.org/10.1088/1742-6596/1818/1/012072
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).