On pencil of bounded linear operators on non-archimedean Banach spaces

Abstract

In this paper, we introduce and check some properties of pseudospectrum and some approximation of a pencil of bounded linear operators on non-archimedean Banach Spaces. Our main result extends some results for a pencil of bounded linear operators on non-archimedean Banach spaces and we give some examples to support our work.

Downloads

Download data is not yet available.

References

A. Ammar, A. Bouchekouaa, A. Jeribi, Some approximation results in a non-Archimedean Banach space, faac 12 (1) (2020), 33-50.

A. Ammar, A. Bouchekouaa, A. Jeribi, Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in Eω, Filomat 33, no 12 (2019), 3961-3976.

P. M. Anselone, Collectively compact operator approximation theory and applications to integral equations, 1971.

T. Diagana, F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.

G. Karishna Kumar, S. H. Lui, Pseudospectrum and condition spectrum, Operators and Matrices (2015), 121-145.

A. Khellaf, H. Guebbai, S. Lemita, Z. Aissaoui, On the Pseudo-spectrum of Operator Pencils, Asian European Journal of Mathematics, 2019.

W. PengHui, Z. Xu, Range inclusion of operators on non-archimedean Banach space, Science China Mathematics, Vol. 53 No. 12 (2010), 3215-3224.

A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.

L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.

Published
2024-04-19
Section
Articles