On pencil of bounded linear operators on non-archimedean Banach spaces
Résumé
In this paper, we introduce and check some properties of pseudospectrum and some approximation of a pencil of bounded linear operators on non-archimedean Banach Spaces. Our main result extends some results for a pencil of bounded linear operators on non-archimedean Banach spaces and we give some examples to support our work.
Téléchargements
Références
A. Ammar, A. Bouchekouaa, A. Jeribi, Some approximation results in a non-Archimedean Banach space, faac 12 (1) (2020), 33-50.
A. Ammar, A. Bouchekouaa, A. Jeribi, Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in Eω, Filomat 33, no 12 (2019), 3961-3976.
P. M. Anselone, Collectively compact operator approximation theory and applications to integral equations, 1971.
T. Diagana, F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.
G. Karishna Kumar, S. H. Lui, Pseudospectrum and condition spectrum, Operators and Matrices (2015), 121-145.
A. Khellaf, H. Guebbai, S. Lemita, Z. Aissaoui, On the Pseudo-spectrum of Operator Pencils, Asian European Journal of Mathematics, 2019.
W. PengHui, Z. Xu, Range inclusion of operators on non-archimedean Banach space, Science China Mathematics, Vol. 53 No. 12 (2010), 3215-3224.
A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.
L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).