Regularity and normality modulo hereditary m-spaces
Abstract
abstract: An m-structure is introduced and investigated in [7]. A hereditary class H is defined and investigated in [1]. In this paper, we introduce and investigate generalizations of regularity and normality in a hereditary m-space (X; m;H).
Downloads
References
A. Al-Omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open aet, Bol. Soc. Paran. Mat., 26(1-2)(2008), 53-64.
A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84), (2), (2019), 101-110.
A. Al-Omari and T. Noiri, Properties of H-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98 (2) (2020), A4 [11 pages].
A. Al-Omari and T. Noiri, Generalizations of Lindel¨of spaces via hereditary classes, Acta Univ. Sapientie Math., 13 (2021), (2), 281-291, https://doi.org/10.2478/ausm-2021-0017.
A. Al-Omari and T. Noiri, Generalizations of regular and normal spaces II, Mathematica, 63 (86) (2021), (1), 3-12, DOI: 10.24193/mathcluj.2021.1.01.
A. Al-Omari, Ahmad, S. Al Ghour, and T. Noiri, Regularity and normality in hereditary bi m-spaces, Demonstratio Mathematica, 55, (1), (2022), 226-237. https://doi.org/10.1515/dema-2022-0021
H. Al-Saadi, A. Al-Omari and T. Noiri, On hyperconnected spaces via m-structures, Ital. J. Pure Appl. Math., 42, (2019), 290–300.
A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29-35.
D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.
T. Noiri and V. Popa, A unified theory of -continuity for functions, Rend. Circ. Mat. Palermo (2), 52 (2003), 163-188.
T. Noiri and V. Popa, Generalizations of closed sets in minimal spaces with hereditary classes, Ann. Univ. Sci. Budapest., 61 (2018), 69-83.
V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31–41.
V. Renukadevi and D. Sivaraj, A generalization of normal spaces, Archiv. Math., 44, (2008), 265-370.
L. A. Stun and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1978.
M. I. Zahid, Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies, Ph.D. dissertation, Univ. of Pittsburgh. 1981.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).