Regularity and normality modulo hereditary m-spaces

  • Ahmad Al-Omari Al al-Bayt University
  • Takashi Noiri

Résumé

abstract: An m-structure is introduced and investigated in [7]. A hereditary class H is defined and investigated in [1]. In this paper, we introduce and investigate generalizations of regularity and normality in a hereditary m-space (X; m;H).

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Ahmad Al-Omari, Al al-Bayt University

Department of Mathematics

Références

A. Al-Omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open aet, Bol. Soc. Paran. Mat., 26(1-2)(2008), 53-64.

A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84), (2), (2019), 101-110.

A. Al-Omari and T. Noiri, Properties of H-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98 (2) (2020), A4 [11 pages].

A. Al-Omari and T. Noiri, Generalizations of Lindel¨of spaces via hereditary classes, Acta Univ. Sapientie Math., 13 (2021), (2), 281-291, https://doi.org/10.2478/ausm-2021-0017.

A. Al-Omari and T. Noiri, Generalizations of regular and normal spaces II, Mathematica, 63 (86) (2021), (1), 3-12, DOI: 10.24193/mathcluj.2021.1.01.

A. Al-Omari, Ahmad, S. Al Ghour, and T. Noiri, Regularity and normality in hereditary bi m-spaces, Demonstratio Mathematica, 55, (1), (2022), 226-237. https://doi.org/10.1515/dema-2022-0021

H. Al-Saadi, A. Al-Omari and T. Noiri, On hyperconnected spaces via m-structures, Ital. J. Pure Appl. Math., 42, (2019), 290–300.

A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29-35.

D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.

K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.

T. Noiri and V. Popa, A unified theory of -continuity for functions, Rend. Circ. Mat. Palermo (2), 52 (2003), 163-188.

T. Noiri and V. Popa, Generalizations of closed sets in minimal spaces with hereditary classes, Ann. Univ. Sci. Budapest., 61 (2018), 69-83.

V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31–41.

V. Renukadevi and D. Sivaraj, A generalization of normal spaces, Archiv. Math., 44, (2008), 265-370.

L. A. Stun and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1978.

M. I. Zahid, Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies, Ph.D. dissertation, Univ. of Pittsburgh. 1981.

Publiée
2024-05-08
Rubrique
Articles