On graded S−comultiplication modules
Abstract
In this paper, we introduce the concept of graded S−comultiplication modules. Several results concerning graded S−comultiplication modules are proved. We show that N is a graded S−second submodule of a graded S−comultiplication R−module M if and only if Ann_R(N) is a graded S−prime ideal of R and there exists x ∈ S such that xN ⊆x- for every x- ∈ S.
Downloads
References
Al-Zoubi, K. and Al-Qderat, A., Some properties of graded comultiplication modules, Open Mathematics, 15, 187-192, (2017).
Ansari-Toroghy, H. and Farshadifar, F., Graded comultiplication modules, Chiang Mai J. Sci., 38 (3), 311-320, (2011).
Bell, J. and Rogalski, D., Z−graded simple ring, American Mathematical Society, 386 (6), 4461-4496, (2016).
Ceken, S. and Alkan, M., On graded secondary coprimary modules and graded secondary representations, Bulletin of the Malaysian Mathematical Sciences Society, 38 (4), 1317-1330, (2015).
Dell’Ambrogio, I. and Stevenson, G., On the derived category of a graded commutative Noetherian ring, Journal of Algebra, 373, 356-376, (2013).
Ebrahimi Atani S., On graded prime submodules, Chiang Mai J. Sci., 33 (1), 3-7, (2006).
Ebrahimi Atani, S. and Ebrahimi Atani, R., Graded multiplication modules and the graded ideal g(M), Turk. J. Math., 35 (1), 1-9, (2011).
Ebrahimi Atani, S. and Farzalipour, F., On graded secondary modules, Turk. J. Math., 31 (4), 371-378, (2007).
Escoriza, J. and Torrecillas, B., Multiplication rings and graded rings. Commun. in Algebra, 27 (12), 6213-6232, (1999).
Farzalipour, F. and Ghiasvand, P., On the Union of graded prime submodules, Thai Journal of Mathematics, 9 (1), 49-55, (2011).
Farzalipour, F. and Ghiasvand, P., Graded S −1−absorbing prime submodules in graded multiplication modules, International Electronic Journal of Algebra, 32, 62-79, (2022).
Ghiasvand, P. and Farzalipour, F., Some properties of graded multiplication modules, Far East J. Math. Sci., 34 (3), 341-352, (2009).
Hamoda, M. and Ashour, A.E., On graded n−absorbing submodules. Le Matematiche, 70 (2), 243-254, (2015).
Nastasescu, C. and Oystaeyen, V.F., Graded ring theory, Mathematical Library, vol. 38. North Holand, Amsterdam, (1983).
Nastasescu, C. and Oystaeyen, V.F., Methods of graded rings, Lecture notes in mathematics, vol. 1836. Berlin-Heidelberg: Springer-Verlag, (2004).
Northcott, D. G., Lesson on rings, modules, and multiplicities, Cambridge Univ. Press, 1968.
Refai, M. and Al-Zoubi, K., On graded primary ideals, Turk. J. Math., 28 (3), 217-229, (2004).
Refai, M. Hailat, M. and Obiedat, S., Graded radicals and graded prime spectra, Far East J. Math. Sci., Part (I), 59-73, (2002).
Saber, H., Alraqad, T. and Abu-Dawwas, R., On graded s−prime submodules, AIMS Mathematics, 6 (3), 2510-2524, (2020).
Theohari-Apostolidi, T. and Vavatsonlas, H., On strongly graded Gorestein orders, Algebra snd Discrete Mathematics, Number 2., 80-89, (2005).
Yildiz, E., Tekir, U. and Koc, S., On S-comultiplication modules, Turk. J. Math., 46 (SI-2), 2034-2046, (2022).
Zamani, N., Finitely generated graded multiplication modules, Glasgow Math. J., 53 (3), 693-705, (2011).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).