On graded S−comultiplication modules
Résumé
In this paper, we introduce the concept of graded S−comultiplication modules. Several results concerning graded S−comultiplication modules are proved. We show that N is a graded S−second submodule of a graded S−comultiplication R−module M if and only if Ann_R(N) is a graded S−prime ideal of R and there exists x ∈ S such that xN ⊆x- for every x- ∈ S.
Téléchargements
Références
Al-Zoubi, K. and Al-Qderat, A., Some properties of graded comultiplication modules, Open Mathematics, 15, 187-192, (2017).
Ansari-Toroghy, H. and Farshadifar, F., Graded comultiplication modules, Chiang Mai J. Sci., 38 (3), 311-320, (2011).
Bell, J. and Rogalski, D., Z−graded simple ring, American Mathematical Society, 386 (6), 4461-4496, (2016).
Ceken, S. and Alkan, M., On graded secondary coprimary modules and graded secondary representations, Bulletin of the Malaysian Mathematical Sciences Society, 38 (4), 1317-1330, (2015).
Dell’Ambrogio, I. and Stevenson, G., On the derived category of a graded commutative Noetherian ring, Journal of Algebra, 373, 356-376, (2013).
Ebrahimi Atani S., On graded prime submodules, Chiang Mai J. Sci., 33 (1), 3-7, (2006).
Ebrahimi Atani, S. and Ebrahimi Atani, R., Graded multiplication modules and the graded ideal g(M), Turk. J. Math., 35 (1), 1-9, (2011).
Ebrahimi Atani, S. and Farzalipour, F., On graded secondary modules, Turk. J. Math., 31 (4), 371-378, (2007).
Escoriza, J. and Torrecillas, B., Multiplication rings and graded rings. Commun. in Algebra, 27 (12), 6213-6232, (1999).
Farzalipour, F. and Ghiasvand, P., On the Union of graded prime submodules, Thai Journal of Mathematics, 9 (1), 49-55, (2011).
Farzalipour, F. and Ghiasvand, P., Graded S −1−absorbing prime submodules in graded multiplication modules, International Electronic Journal of Algebra, 32, 62-79, (2022).
Ghiasvand, P. and Farzalipour, F., Some properties of graded multiplication modules, Far East J. Math. Sci., 34 (3), 341-352, (2009).
Hamoda, M. and Ashour, A.E., On graded n−absorbing submodules. Le Matematiche, 70 (2), 243-254, (2015).
Nastasescu, C. and Oystaeyen, V.F., Graded ring theory, Mathematical Library, vol. 38. North Holand, Amsterdam, (1983).
Nastasescu, C. and Oystaeyen, V.F., Methods of graded rings, Lecture notes in mathematics, vol. 1836. Berlin-Heidelberg: Springer-Verlag, (2004).
Northcott, D. G., Lesson on rings, modules, and multiplicities, Cambridge Univ. Press, 1968.
Refai, M. and Al-Zoubi, K., On graded primary ideals, Turk. J. Math., 28 (3), 217-229, (2004).
Refai, M. Hailat, M. and Obiedat, S., Graded radicals and graded prime spectra, Far East J. Math. Sci., Part (I), 59-73, (2002).
Saber, H., Alraqad, T. and Abu-Dawwas, R., On graded s−prime submodules, AIMS Mathematics, 6 (3), 2510-2524, (2020).
Theohari-Apostolidi, T. and Vavatsonlas, H., On strongly graded Gorestein orders, Algebra snd Discrete Mathematics, Number 2., 80-89, (2005).
Yildiz, E., Tekir, U. and Koc, S., On S-comultiplication modules, Turk. J. Math., 46 (SI-2), 2034-2046, (2022).
Zamani, N., Finitely generated graded multiplication modules, Glasgow Math. J., 53 (3), 693-705, (2011).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).