Rate of growth of polynomials non vanishing inside a circle
Abstract
For a polynomial $P(z)=\displaystyle\sum_{v=0}^na_vz^v$ of degree $n$ having all zerosin $|z|\geq k, k\geq 1$ Govil et al.[\emph{ILLINOIS J. of Math.}] proved:
$$|P'(z)|\leq n\dfrac{n|a_0|+k^2|a_1|}{(1+k^2)n|a_0|+2k^2|a_1|}|P(z)|.$$
In this paper besides the refinement of above inequality, we also generalize some well known inequalities.
Downloads
References
N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
S. N. Bernstein, Sur la limitation des derivees des polynomes, C. R. Acad. Sci. Paris., 190 (1930), 338-340.
V. N. Dubinin, Applications of the Schwarz Lemma to inequalities for entire functions with constraints on zeros. J. Math. Sci.,(N.Y) 143(3)(2007), 3069-3076.
C. Frappier, Q. I. Rahman and Rt. St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc., 288(1985), 69-99.
N. K. Govil, Q. I. Rahman and G. Schmeisser On the derivative of a polynomial, ILLIONIS J. of Math., 23 (1979).
P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509- 513.
G. V. Milovanovi_c, D. S. Mitrinovic and Th. M. Rassias, Topics in polynomials, Extremal problems, Inequalities, Zeros, World Scientific, Singapore, (1994).
M. A. Qazi, On the maximum modulus of Polynomials, Proceedings of the American Math. society 115, (1992).
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, New york, 2002.
T. Sheil-Small, Complex polynomials, Cambridge University Press, 2002.
P. Turan, Uber die ableitung von polynomen, Compos. Math., 7 (1939), 89-95.
C. Visser, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 48, 276-281, Indag. Math.(7)(1995), 81-86.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).