Rate of growth of polynomials non vanishing inside a circle

Resumo

For a polynomial $P(z)=\displaystyle\sum_{v=0}^na_vz^v$ of degree $n$ having all zeros
in $|z|\geq k, k\geq 1$ Govil et al.[\emph{ILLINOIS J. of Math.}] proved:
$$|P'(z)|\leq n\dfrac{n|a_0|+k^2|a_1|}{(1+k^2)n|a_0|+2k^2|a_1|}|P(z)|.$$
In this paper besides the refinement of above inequality, we also generalize some well known inequalities.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mohd Yousf Mir, Research Scholar

Department of Mathematics

Lubna Wali Shah, Central University of Kashmir

Department of Mathematics

Wali Mohammad Shah, Central University of Kashmir

Department of Mathematics

Referências

N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.

S. N. Bernstein, Sur la limitation des derivees des polynomes, C. R. Acad. Sci. Paris., 190 (1930), 338-340.

V. N. Dubinin, Applications of the Schwarz Lemma to inequalities for entire functions with constraints on zeros. J. Math. Sci.,(N.Y) 143(3)(2007), 3069-3076.

C. Frappier, Q. I. Rahman and Rt. St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc., 288(1985), 69-99.

N. K. Govil, Q. I. Rahman and G. Schmeisser On the derivative of a polynomial, ILLIONIS J. of Math., 23 (1979).

P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509- 513.

G. V. Milovanovi_c, D. S. Mitrinovic and Th. M. Rassias, Topics in polynomials, Extremal problems, Inequalities, Zeros, World Scientific, Singapore, (1994).

M. A. Qazi, On the maximum modulus of Polynomials, Proceedings of the American Math. society 115, (1992).

Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, New york, 2002.

T. Sheil-Small, Complex polynomials, Cambridge University Press, 2002.

P. Turan, Uber die ableitung von polynomen, Compos. Math., 7 (1939), 89-95.

C. Visser, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 48, 276-281, Indag. Math.(7)(1995), 81-86.

Publicado
2024-05-08
Seção
Artigos