Discussion on the existence problems of fixed circle in metric spaces

  • Deepesh Kumar Patel Visvesvaraya National Institute of Technology, Nagpur, India
  • Bhupeshwar Visvesvaraya National Institute of Technology, Nagpur 440010, India.
  • Dhananjay Gopal Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India

Abstract

This paper deals with the problems of the existence of a fixed circle for multivalued mappings. To prove the validity of the postulates, we develop innovative fixed circle theorems in metric spaces by using Caristi's technique and validate them using illustrated instances with geometric explanation. In fact, for multivalued mappings two different versions of the existence theorems on fixed circle are presented.

Downloads

Download data is not yet available.

References

Ameer, E., Aydi, H., Nazam, M., De la Sen, M. Results on fixed circles and discs for L(ω,C)-contractions and related applications, Adv. Differ. Equ., 2021(2021), 1-15, Article ID 349.

Aydi, H., Tas, N., Ozgur, N.Y., Mlaiki, N., Fixed discs in rectangular metric spaces, Symmetry, 11(2019), no. 2, Article ID 294, DOI:10.3390/sym11020294.

Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equation integrales, Fund. Math., 3(1922), no. 1, 133-181.

Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.

Hicks, T., Rhoades, B.E., Fixed points and continuity for multivalued mappings, Int. J. Math. Sci., 15(1992), no. 1, 15-30.

Nadler, S.B., Multi-valued contraction mappings, Pac. J. Math., 30(1969), 475-487.

Mizoguchi, N., Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141(1989), no. 1, 177-188.

Mlaiki, N., Tas, N., Ozgur, N.Y., On the fixed circle problem and Khan type contractions, Axioms, 7(2018), no. 4, Article ID 80, DOI:10.3390/axioms7040080.

Ozgur, N.Y., Fixed disc results via simulation functions, Turkish J. Math., 43(2019), no. 6, 2794-2805.

Ozgur, N.Y., Ta¸s, N., Some fixed circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42(2017), no. 4, 1433-1449, DOI: 10.1007/s40840-017-0555-z.

Ozgur, N.Y., Ta¸s, U. Celik, N., New fixed circle results on S-metric spaces, Bull. Math. Anal. Appl., 9(2017), no. 2, 10-23.

Ozgur, N.Y., Ta¸s, N., Some fixed circle theorems and discontinuity at fixed circle, AIP Conf. Proc., 1926(2018), no. 1, 020048, DOI: 10.1063/1.5020497.

Tas, N., Ozgur, Y.N., New multivalued contractions and the fixed circle problem, arXiv:1911.02939, (2019).

Tas, N., Ozgur, Y.N., Mlaiki N., New types of Fc-contractions and the fixed circle problem, Mathematics, 6(2018), Article ID 188, DOI:10.3390/math6100188.

Tomar, A., Joshi, M., Padaliya, S., Fixed point to fixed circle and activation function in partial metric space, J. Appl. Anal., 2021(2021), 2021-2057, DOI:10.1515/jaa-2021-2057.

Published
2025-02-14
Section
Research Articles