Discussion on the existence problems of fixed circle in metric spaces
Resumo
This paper deals with the problems of the existence of a fixed circle for multivalued mappings. To prove the validity of the postulates, we develop innovative fixed circle theorems in metric spaces by using Caristi's technique and validate them using illustrated instances with geometric explanation. In fact, for multivalued mappings two different versions of the existence theorems on fixed circle are presented.
Downloads
Referências
Ameer, E., Aydi, H., Nazam, M., De la Sen, M. Results on fixed circles and discs for L(ω,C)-contractions and related applications, Adv. Differ. Equ., 2021(2021), 1-15, Article ID 349.
Aydi, H., Tas, N., Ozgur, N.Y., Mlaiki, N., Fixed discs in rectangular metric spaces, Symmetry, 11(2019), no. 2, Article ID 294, DOI:10.3390/sym11020294.
Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equation integrales, Fund. Math., 3(1922), no. 1, 133-181.
Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
Hicks, T., Rhoades, B.E., Fixed points and continuity for multivalued mappings, Int. J. Math. Sci., 15(1992), no. 1, 15-30.
Nadler, S.B., Multi-valued contraction mappings, Pac. J. Math., 30(1969), 475-487.
Mizoguchi, N., Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141(1989), no. 1, 177-188.
Mlaiki, N., Tas, N., Ozgur, N.Y., On the fixed circle problem and Khan type contractions, Axioms, 7(2018), no. 4, Article ID 80, DOI:10.3390/axioms7040080.
Ozgur, N.Y., Fixed disc results via simulation functions, Turkish J. Math., 43(2019), no. 6, 2794-2805.
Ozgur, N.Y., Ta¸s, N., Some fixed circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42(2017), no. 4, 1433-1449, DOI: 10.1007/s40840-017-0555-z.
Ozgur, N.Y., Ta¸s, U. Celik, N., New fixed circle results on S-metric spaces, Bull. Math. Anal. Appl., 9(2017), no. 2, 10-23.
Ozgur, N.Y., Ta¸s, N., Some fixed circle theorems and discontinuity at fixed circle, AIP Conf. Proc., 1926(2018), no. 1, 020048, DOI: 10.1063/1.5020497.
Tas, N., Ozgur, Y.N., New multivalued contractions and the fixed circle problem, arXiv:1911.02939, (2019).
Tas, N., Ozgur, Y.N., Mlaiki N., New types of Fc-contractions and the fixed circle problem, Mathematics, 6(2018), Article ID 188, DOI:10.3390/math6100188.
Tomar, A., Joshi, M., Padaliya, S., Fixed point to fixed circle and activation function in partial metric space, J. Appl. Anal., 2021(2021), 2021-2057, DOI:10.1515/jaa-2021-2057.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



