Global well-posedness and analyticity for the 3D fractional magneto-hydrodynamics equations in the Besov-Morrey spaces caracerized by Semi-group
Abstract
Our research establishes the existence and uniqueness of solutions, the analyticity, and the decay estimates of the solutions of the 3D fractional magneto-hydrodynamics equations (FMHD) in the BesovMorrey spaces characterized by the semigroup Lα := e-t(-∆)α, noted by Ns p,λ. Assuming that the initial data (a0, m0) are small and belong to Ns p,λ, we prove the global well-posedness of the (FMHD) equation.
Downloads
References
Adams, D. R., A note on Riesz potentials. (1975).
Azanzal, A., Allalou, C., Melliani, S., Well-posedness, analyticity and time decay of the 3D fractional magnetohydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent. J. of Elliptic and Parabolic Equations, 8(2), 723-742, (2022).
Azanzal, A., Allalou, C., and Melliani, S., Well-posedness and blow-up of solutions for the 2D dissipative quasigeostrophic equation in critical Fourier-Besov-Morrey spaces. Journal of Elliptic and Parabolic Equations, 8(1), 23-48(2022).
Azanzal, A., Allalou, C., and Abbassi, A., Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces. J. Nonlinear Funct. Anal., 2021, 24(2021).
Azanzal, A., Allalou, C., and Melliani, S., Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier–Besov spaces. Boletın de la Sociedad Matematica Mexicana,28(3), 74(2022).
Azanzal, A., Allalou, C., and Melliani, S., Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier-Besov-Morrey spaces. Boletim da Sociedade Paranaense de Matem´atica, 41, 1-19(2023).
Chemin, J. Y., Desjardins, B., Gallagher, I., Grenier, E.,Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations. Clarendon Press, 32, (2006).
El Baraka, A., Toumlilin, M., Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces.(2017).
El Baraka, A., Toumlilin, M.,Well-posedness and stability for the generalized incompressible magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces. J.Acta Mathematica Scientia, 39, 1551-1567, (2019).
El Baraka, A., Toumlilin, M.,The uniform global well-posedness and the stability of the 3D generalized magnetohydrodynamic equations with the Coriolis force. J. Communications in Optimization Theory, 12, 2019.
Ferreira, L. C. F., Lima, L. S. M., Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. J.Monatshefte fur Mathematik, 175 , 491-509, (2014).
Li, P. Zhai, Z.,Generalized Navier-Stokes equations with initial data in local Q-type spaces. J. Math Anal Appl, 369 , 595-609,(2010).
Liu, Q., Zhao, J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier–Herz spaces. J. of Mathematical Analysis and Applications, 420(2), 1301-1315, (2014).
Sun, J., Fu, Z., Yin, Y., and Yang, M.,Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. J. Discrete and Continuous Dynamical Systems-B, 26(6), 3409-3425,(2020).
Sun, X., Liu, J., and Zhang, J.,Global Well-Posedness for the Fractional Navier-Stokes-Coriolis Equations in Function Spaces Characterized by Semigroups.(2021).
Yang, M., Fu, Z., and Sun, J., Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. J. Science China Mathematics, 60, 1837-1856, (2017).
Wang, Y., Wang, K., Global well-posedness of the three dimensional magnetohydrodynamics equations. J. Nonlinear Analysis: Real World Applications, 17, 245-251, (2014).
Wang, W., Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces. J. Zeitschrift fur angewandte Mathematik und Physik, 70(6), 163, (2019).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



