Global well-posedness and analyticity for the 3D fractional magneto-hydrodynamics equations in the Besov-Morrey spaces caracerized by Semi-group

  • Hassan Khaider FST of Beni-Mellal, Sultan Moulay slimane University, Morocco.
  • Achraf Azanzal
  • Chakir Allalou
  • Said Melliani

Resumo

Our research establishes the existence and uniqueness of solutions, the analyticity, and the decay estimates of the solutions of the 3D fractional magneto-hydrodynamics equations (FMHD) in the BesovMorrey spaces characterized by the semigroup Lα := e-t(-∆)α, noted by Ns p,λ. Assuming that the initial data (a0, m0) are small and belong to Ns p,λ, we prove the global well-posedness of the (FMHD) equation.

Downloads

Não há dados estatísticos.

Referências

Adams, D. R., A note on Riesz potentials. (1975).

Azanzal, A., Allalou, C., Melliani, S., Well-posedness, analyticity and time decay of the 3D fractional magnetohydrodynamics equations in critical Fourier-Besov-Morrey spaces with variable exponent. J. of Elliptic and Parabolic Equations, 8(2), 723-742, (2022).

Azanzal, A., Allalou, C., and Melliani, S., Well-posedness and blow-up of solutions for the 2D dissipative quasigeostrophic equation in critical Fourier-Besov-Morrey spaces. Journal of Elliptic and Parabolic Equations, 8(1), 23-48(2022).

Azanzal, A., Allalou, C., and Abbassi, A., Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces. J. Nonlinear Funct. Anal., 2021, 24(2021).

Azanzal, A., Allalou, C., and Melliani, S., Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier–Besov spaces. Boletın de la Sociedad Matematica Mexicana,28(3), 74(2022).

Azanzal, A., Allalou, C., and Melliani, S., Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier-Besov-Morrey spaces. Boletim da Sociedade Paranaense de Matem´atica, 41, 1-19(2023).

Chemin, J. Y., Desjardins, B., Gallagher, I., Grenier, E.,Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations. Clarendon Press, 32, (2006).

El Baraka, A., Toumlilin, M., Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces.(2017).

El Baraka, A., Toumlilin, M.,Well-posedness and stability for the generalized incompressible magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces. J.Acta Mathematica Scientia, 39, 1551-1567, (2019).

El Baraka, A., Toumlilin, M.,The uniform global well-posedness and the stability of the 3D generalized magnetohydrodynamic equations with the Coriolis force. J. Communications in Optimization Theory, 12, 2019.

Ferreira, L. C. F., Lima, L. S. M., Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces. J.Monatshefte fur Mathematik, 175 , 491-509, (2014).

Li, P. Zhai, Z.,Generalized Navier-Stokes equations with initial data in local Q-type spaces. J. Math Anal Appl, 369 , 595-609,(2010).

Liu, Q., Zhao, J., Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier–Herz spaces. J. of Mathematical Analysis and Applications, 420(2), 1301-1315, (2014).

Sun, J., Fu, Z., Yin, Y., and Yang, M.,Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. J. Discrete and Continuous Dynamical Systems-B, 26(6), 3409-3425,(2020).

Sun, X., Liu, J., and Zhang, J.,Global Well-Posedness for the Fractional Navier-Stokes-Coriolis Equations in Function Spaces Characterized by Semigroups.(2021).

Yang, M., Fu, Z., and Sun, J., Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. J. Science China Mathematics, 60, 1837-1856, (2017).

Wang, Y., Wang, K., Global well-posedness of the three dimensional magnetohydrodynamics equations. J. Nonlinear Analysis: Real World Applications, 17, 245-251, (2014).

Wang, W., Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces. J. Zeitschrift fur angewandte Mathematik und Physik, 70(6), 163, (2019).

Publicado
2025-03-24
Seção
Artigos