GEOMETRY OF $\upeta$-RICCI YAMABE SOLITON ON NEARLY SASAKIAN MANIFOLD

  • Khaled A. A. Alloush Arab Open University-KSA
  • Rajendra R Field Marshal K.M. Cariappa College (A Constituent College of Mangalore University)
  • Siva Kota Reddy Polaepalli JSS Science and Technology University http://orcid.org/0000-0003-4033-8148
  • Pavani N Sri Krishna Institute of Technology
  • Somashekhara G M. S. Ramaiah University of Applied Sciences
  • Shivaprasanna G. S. Dr. Ambedkar Institute of Technology

Abstract

The present paper is devoted to study $\upeta$-Ricci-Yamabe soliton on nearly-Sasakian manifolds. We examine Ricci-semisymmetricity and Einstein- semisymmetric on nearly-sasakian manifold to obtain condition for shrinking or steady or expanding. Further, we analyze the 3-dimensional nearly-Sasakian manifolds admitting $\upeta$-Ricci-Yamabe soliton satisfying certain geometric conditions.

Downloads

Download data is not yet available.

Author Biography

Siva Kota Reddy Polaepalli, JSS Science and Technology University

Professor, Departmnet of Mathematics, JSS Science and Technology, Mysuru-570 006, India

References

\bibitem{ang} P. G. Angadi, G. S. Shivaprasanna, G. Somashekhara and
P. Siva Kota Reddy, Ricci-Yamabe Solitons on Submanifolds of Some Indefinite Almost Contact Manifolds, \emph{Adv. Math., Sci. J.}, \textbf{9}(11) (2020), 10067--10080.
\bibitem{ang1} P. G. Angadi, G. S. Shivaprasanna, G. Somashekhara and
P. Siva Kota Reddy, Ricci Solitons on $(LCS)$-Manifolds under $D$-Homothetic Deformation, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 672-683.

\bibitem{y1} J. T. Cho, M. Kimura, Ricci solitons and Real hypersurfaces in a complex
space form, \emph{Tohoku Math. J.}, 61(2) (2009), 205-212.




\bibitem{y2} R. S. Hamilton, The Ricci flow on surfaces, \emph{Contemp. Math.}, 71 (1988), 237-261.

\bibitem{som3} G. Somashekhara, P. Siva Kota Reddy, N. Pavani and G. J. Manjula, $\upeta$-Ricci-Yamabe Solitons on Submanifolds of some Indefinite almost Contact Manifolds, \emph{J. Math. Comput. Sci.}, \textbf{11}(3) (2021), 3775--3791.

\bibitem{som4} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal Ricci Soliton in an Indefinite Trans-Sasakian manifold, {Vladikavkaz Math. J}, \textbf{23}(3) (2021), 43--49.

\bibitem{som5} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Ricci Solitons and Generalized Weak Symmetries under $D$-Homothetically Deformed $LP$-Sasakian Manifolds, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 684--695.

\bibitem{som6} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal $\upeta$-Ricci Solitons in Lorentzian Para-Sasakian Manifold Admitting Semi-Symmetric Metric Connection, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 1008--1019.

\bibitem{som11} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, $\upeta$-Ricci soliton in an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection, \emph{Bol. Soc. Parana. Mat. (3)}, \textbf{41} (2023), 1--9.


\bibitem{y3} M. D. Siddiqi and M. A. Akyol, $\upeta$-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, arxiv preprint arxiv:2004.14124, (2020).
Published
2025-01-21
Section
Research Articles