GEOMETRY OF $\upeta$-RICCI YAMABE SOLITON ON NEARLY SASAKIAN MANIFOLD
Resumen
The present paper is devoted to study $\upeta$-Ricci-Yamabe soliton on nearly-Sasakian manifolds. We examine Ricci-semisymmetricity and Einstein- semisymmetric on nearly-sasakian manifold to obtain condition for shrinking or steady or expanding. Further, we analyze the 3-dimensional nearly-Sasakian manifolds admitting $\upeta$-Ricci-Yamabe soliton satisfying certain geometric conditions.
Descargas
La descarga de datos todavía no está disponible.
Citas
\bibitem{ang} P. G. Angadi, G. S. Shivaprasanna, G. Somashekhara and
P. Siva Kota Reddy, Ricci-Yamabe Solitons on Submanifolds of Some Indefinite Almost Contact Manifolds, \emph{Adv. Math., Sci. J.}, \textbf{9}(11) (2020), 10067--10080.
\bibitem{ang1} P. G. Angadi, G. S. Shivaprasanna, G. Somashekhara and
P. Siva Kota Reddy, Ricci Solitons on $(LCS)$-Manifolds under $D$-Homothetic Deformation, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 672-683.
\bibitem{y1} J. T. Cho, M. Kimura, Ricci solitons and Real hypersurfaces in a complex
space form, \emph{Tohoku Math. J.}, 61(2) (2009), 205-212.
\bibitem{y2} R. S. Hamilton, The Ricci flow on surfaces, \emph{Contemp. Math.}, 71 (1988), 237-261.
\bibitem{som3} G. Somashekhara, P. Siva Kota Reddy, N. Pavani and G. J. Manjula, $\upeta$-Ricci-Yamabe Solitons on Submanifolds of some Indefinite almost Contact Manifolds, \emph{J. Math. Comput. Sci.}, \textbf{11}(3) (2021), 3775--3791.
\bibitem{som4} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal Ricci Soliton in an Indefinite Trans-Sasakian manifold, {Vladikavkaz Math. J}, \textbf{23}(3) (2021), 43--49.
\bibitem{som5} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Ricci Solitons and Generalized Weak Symmetries under $D$-Homothetically Deformed $LP$-Sasakian Manifolds, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 684--695.
\bibitem{som6} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal $\upeta$-Ricci Solitons in Lorentzian Para-Sasakian Manifold Admitting Semi-Symmetric Metric Connection, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 1008--1019.
\bibitem{som11} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, $\upeta$-Ricci soliton in an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection, \emph{Bol. Soc. Parana. Mat. (3)}, \textbf{41} (2023), 1--9.
\bibitem{y3} M. D. Siddiqi and M. A. Akyol, $\upeta$-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, arxiv preprint arxiv:2004.14124, (2020).
P. Siva Kota Reddy, Ricci-Yamabe Solitons on Submanifolds of Some Indefinite Almost Contact Manifolds, \emph{Adv. Math., Sci. J.}, \textbf{9}(11) (2020), 10067--10080.
\bibitem{ang1} P. G. Angadi, G. S. Shivaprasanna, G. Somashekhara and
P. Siva Kota Reddy, Ricci Solitons on $(LCS)$-Manifolds under $D$-Homothetic Deformation, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 672-683.
\bibitem{y1} J. T. Cho, M. Kimura, Ricci solitons and Real hypersurfaces in a complex
space form, \emph{Tohoku Math. J.}, 61(2) (2009), 205-212.
\bibitem{y2} R. S. Hamilton, The Ricci flow on surfaces, \emph{Contemp. Math.}, 71 (1988), 237-261.
\bibitem{som3} G. Somashekhara, P. Siva Kota Reddy, N. Pavani and G. J. Manjula, $\upeta$-Ricci-Yamabe Solitons on Submanifolds of some Indefinite almost Contact Manifolds, \emph{J. Math. Comput. Sci.}, \textbf{11}(3) (2021), 3775--3791.
\bibitem{som4} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal Ricci Soliton in an Indefinite Trans-Sasakian manifold, {Vladikavkaz Math. J}, \textbf{23}(3) (2021), 43--49.
\bibitem{som5} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Ricci Solitons and Generalized Weak Symmetries under $D$-Homothetically Deformed $LP$-Sasakian Manifolds, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 684--695.
\bibitem{som6} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, Conformal $\upeta$-Ricci Solitons in Lorentzian Para-Sasakian Manifold Admitting Semi-Symmetric Metric Connection, \emph{ Ital. J. Pure Appl. Math.}, \textbf{46} (2021), 1008--1019.
\bibitem{som11} G. Somashekhara, S. Girish Babu and P. Siva Kota Reddy, $\upeta$-Ricci soliton in an indefinite trans-Sasakian manifold admitting semi-symmetric metric connection, \emph{Bol. Soc. Parana. Mat. (3)}, \textbf{41} (2023), 1--9.
\bibitem{y3} M. D. Siddiqi and M. A. Akyol, $\upeta$-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, arxiv preprint arxiv:2004.14124, (2020).
Publicado
2025-01-21
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



