<b>Limit cycles for Singular Perturbation Problems via Inverse Integrating Factor</b> - doi: 10.5269/bspm.v26i1-2.7401

  • Jaume Llibre Universitat Autonoma de Barcelona,
  • João C. R. Medrado Instituto de Matematica e Estatistica - UFG
  • Paulo R. da Silva IBILCE - UNESP
Keywords: Limit cycles, vector fields, singular perturbation, inverse integrating factor.

Abstract

In this paper singularly perturbed vector fields X_{\varepsilon} defined in R^2 are discussed. The main results use the solutions of the linear partial diferential equation X_{\varepsilon}V = div(X_{\varepsilon})V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdor distance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Downloads

Download data is not yet available.
Published
2009-06-23
Section
Articles