<b>Limit cycles for Singular Perturbation Problems via Inverse Integrating Factor</b> - doi: 10.5269/bspm.v26i1-2.7401
Résumé
In this paper singularly perturbed vector fields X_{\varepsilon} defined in R^2 are discussed. The main results use the solutions of the linear partial diferential equation X_{\varepsilon}V = div(X_{\varepsilon})V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdor distance.
Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2009-06-23
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).