<b>A Characterization for Discrete Quantum Group</b> - doi: 10.5269/bspm.v23i1-2.7455

  • Lining Jiang Beijing Institute of Technology
  • Ming Liu Beijing Institute of Technology
  • Guosheng Zhang Shijiazhuang College
Keywords: discrete quantum group, reduced functional, cointegral.

Abstract

Based on the work of A.Van Daele, E.G.Effros and Z.J.Ruan on multiplier Hopf algerba and discrete quantum group, this paper states that discrete quantum group (A, \Delta) is exactly the set {(\omega \otimes \iota) \Delta(a) | a\in A, \omega \in A^{\ast}}, where A^{\ast} is the space of all reduced functionals on A.Furthermore, this paper characterizes (A, \Delta) as an algebraic quantum group with a standard \ast-operation and a special element z \in  A such that (1 \otimes ­ a) \Delta(z) = \Delta(z)(a ­ \otimes 1) (\forall a \in A).

Downloads

Download data is not yet available.
Section
Articles