<b>A Characterization for Discrete Quantum Group</b> - doi: 10.5269/bspm.v23i1-2.7455

  • Lining Jiang Beijing Institute of Technology
  • Ming Liu Beijing Institute of Technology
  • Guosheng Zhang Shijiazhuang College

Resumen

Based on the work of A.Van Daele, E.G.Effros and Z.J.Ruan on multiplier Hopf algerba and discrete quantum group, this paper states that discrete quantum group (A, \Delta) is exactly the set {(\omega \otimes \iota) \Delta(a) | a\in A, \omega \in A^{\ast}}, where A^{\ast} is the space of all reduced functionals on A.Furthermore, this paper characterizes (A, \Delta) as an algebraic quantum group with a standard \ast-operation and a special element z \in  A such that (1 \otimes ­ a) \Delta(z) = \Delta(z)(a ­ \otimes 1) (\forall a \in A).

Descargas

La descarga de datos todavía no está disponible.
Sección
Articles